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Abstract

The traditional fitness function based methodology of
artificial evolution is argued to be inadequate for the
construction of entities with behaviors novel to their de-
signers. Evolutionary emergence via natural selection
(without an explicit fitness function) is the way forward.
This paper further considers the question of what to
evolve, the focus being on principles of developmental
modularity in neural networks. To develop and test the
ideas, an artificial world containing autonomous organ-
isms has been created and is described. Results show the
developmental system to be well suited to long-term in-
cremental evolution. Novel emergent strategies are iden-
tified both from an observer’s perspective and in terms
of their neural mechanisms.

How to Evolve Novel Behaviors
The Artificial Life goal presents us with the problem
that we do not understand (natural) life well enough to
specify it to a machine. Therefore we must either in-
crease our understanding of it until we can, or create a
system which outperforms the specifications we can give
it. The first possibility includes the traditional top-down
methodology, which is clearly as inappropriate for ALife
as it has proved to be for AI. It also includes manual in-
cremental (bottom-up) construction of autonomous sys-
tems with the aim of increasing our understanding and
ability to model life by building increasingly impressive
systems, retaining functional validity by testing them
within their destination environments.

The second option is to create systems which out-
perform the specifications given them and which are
open to producing behaviors comparable with those of
(albeit simple) natural life. Evolution in nature has
no (explicit) evaluation function. Through organism-
environment interactions, including interactions between
similarly-capable organisms, certain behaviors fare bet-
ter than others. This is how the non-random cumulative
selection works without any long-term goal. It is why
novel structures and behaviors emerge.

As artificial evolution is applied to increasingly com-
plex problems, the difficulty in specifying satisfactory
evaluation functions is becoming apparent – see (Zaera,

Cliff & Bruten 1996), for example. At the same time,
the power of natural selection is being demonstrated in
prototypal systems such as Tierra (Ray 1991) and Poly-
World (Yaeger 1993). Artificial selection involves the
imposition of an artifice crafted for some cause external
to a system beneath it while natural selection does not.
Natural selection is necessary for evolutionary emergence
but does not imply sustained emergence (evermore new
emergent phenomena) and the question “what should we
evolve?” needs to be answered with that in mind (Chan-
non & Damper 1998). This paper sets out to answer
that question. Further discussion concerning evolution-
ary emergence can be found in (Channon & Damper
1998), along with evaluations of other natural selection
systems. Note that an explicit fitness landscape is not
a requirement for artificial selection and so an implicit
fitness landscape does not imply natural selection.

General issues concerning long-term evolution have
been addressed by Harvey’s ‘Species Adaptation Genetic
Algorithm’ (SAGA) theory (Harvey 1993). He demon-
strates that changes in genotype length should take place
much more slowly than crossover’s fast mixing of chro-
mosomes. The population should be nearly-converged,
evolving as species. Therefore the fitness landscape (ac-
tual or implicit) must be sufficiently correlated for mu-
tation to be possible without dispersing the species in
genotype space or hindering the assimilation by crossover
of beneficial mutations into the species.

What to Evolve

Neural networks are the clear choice because of their
graceful degradation (high degree of neutrality). But
how should the network structure be specified? The
evolutionary emergence of novel behaviors requires new
neural structures. We can expect most to be descended
from neural structures which once had different func-
tions. There are many known examples of neural struc-
tures that serve a purpose different from a previous use.

Evidence from gene theory tells us that genes are used
like a recipe, not a blueprint. In any one cell, at any one
stage of development, only a tiny proportion of the genes
will be in use. Further, the effect that a gene has depends



upon the cell’s local environment – its neighbors.

The above two paragraphs are related: For a type of
module to be used for a novel function (and then to con-
tinue to evolve from there), without loss of current func-
tion, either an extra module must be created or there
must be one ‘spare’ (to alter). Either way, a duplica-
tion system is required. This could be either by gene
duplication or as part of a developmental process.

Gene duplication can be rejected as a sole source of
neural structure duplication, because the capacity re-
quired to store all connections in a large network without
a modular coding is genetically infeasible. Therefore, for
the effective evolutionary emergence of complex behav-
iors, a modular developmental process is called for. For
the sake of research validity (regarding long-term goals),
this should be included from the outset.

Gruau’s cellular encoding: Gruau used genetic
programming (GP) (Koza 1992) to evolve his ‘cellular
programming language’ code (Gruau 1996) to develop
modular artificial neural networks. The programs used
are trees of graph-rewrite rules whose main points are
cell division and iteration.

The crucial shortcoming is that modularity can only
come from either gene duplication (see objections above)
or iteration. But iteration is not a powerful enough
developmental backbone. Consider, for example, the
cerebral cortex’s macro-modules of hundreds of mini-
columns. These are complicated structures that cannot
be generated with a ‘repeat one hundred times: mini-
column’ rule. There are variations between modules.

Cellular automata: Many investigators have used
conventional cellular automata (CA) for the construction
of neural networks. However, such work is more at the
level of neuron growth than the development of whole
networks. Although CA rules are suited to the evolution
of network development in principle, the amount of work
remaining makes this a major research hurdle.

Diffusion models: While there are a number of ex-
amples of work involving the evolution of neural net-
works whose development is determined by diffusion
along concentration gradients, the resulting network
structures have (to date) been only basic. So as to con-
centrate on the intended area of research, these models
have also been passed over.

Lindenmayer systems: Kitano used a context-
free L-system (Lindenmayer 1968) to evolve connectiv-
ity matrices (Kitano 1990). The number of rules in
the genotype was variable. Boers and Kuiper used
a context-sensitive L-system to evolve modular feed-
forward network architectures (Boers & Kuiper 1992).
Both these works used backpropagation to train the
evolved networks. Also, the resulting structures were
fully-connected clusters of unconnected nodes (i.e. no
links within clusters and if one node in cluster A is linked
to one node in cluster B then all nodes in A are linked
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Figure 1: Schematic block diagram of a neuron, from
(Cliff, Harvey & Husbands 1992).

to all in B). It may be that the results achieved reflect
the workings of backpropagation more than evolution.
However, these works demonstrated the suitability of L-
systems to ‘non-iterative modular’ network development.

The Neural and Development Systems

The artificial neural networks used here are recurrent
networks of nodes as used successfully by Cliff, Harvey
and Husbands in their evolutionary robotics work.

Developmental system: A context-free L-system
was designed for the evolution of networks of these neu-
rons. Specific attention was paid to producing a system
in which children’s networks resemble aspects of their
parents’. Each node has a bit-string ‘character’ (label)
associated with it, initialized at construction and modi-
fiable during development. These characters may be of
any non-zero length. A node may be a network input, a
network output, or neither, as determined by an axiom
(birth) network and development.

A production rule matches a node if its predecessor is
the start of the node’s character. The longer the match-
ing predecessor, the better the match; the best matching
rule (if any) is applied. Thus ever more specific rules can
evolve from those that have already been successful.

The production rules have the following form:

P → Sr,Sn ; b1, b2, b3, b4, b5, b6 where:

P Predecessor (initial bits of node’s character)
Sr Successor 1: replacement node’s character
Sn Successor 2: new node’s character
bits: link details [0=no,1=yes]:
(b1, b2) reverse types [inhibitory/excitatory] of

(input, output) links on Sn
(b3, b4) (inhibitory, excitatory) link from Sr to Sn
(b5, b6) (inhibitory, excitatory) link from Sn to Sr

If a successor has no character (0 length) then that
node is not created. Thus the predecessor node may be
replaced by 0, 1 or 2 nodes. The ‘replacement’ successor
(if it exists) is just the old (predecessor) node, with the
same links but a different character. The ‘new’ successor



(if it exists) is a new node. It inherits a copy of the old
node’s input links unless it has a link from the old node
(b3 or b4). It inherits a copy of the old node’s output
links unless it has a link to the old node (b5 or b6).

New network input nodes are (only) produced from
network input nodes and new network output nodes are
(only) produced from network output nodes. Character-
based matching of network inputs and outputs ensures
that the addition or removal of nodes later in develop-
ment or evolution will not damage the relationships of
previously adapted network inputs and outputs.

Genetic decoding of production rules: The ge-
netic decoding is loosely similar to that in (Boers &
Kuiper 1992). For every bit of the genotype, an attempt
is made to read a rule that starts on that bit. A valid
rule is one that starts with 11 and has enough bits after
it to complete a rule.

To read a rule, the system uses the idea of ‘segments’.
A segment is a bit string with its odd-numbered bits (1st,
3rd, 5th, . . . ) all 0. Thus the reading of a segment is as
follows: read the current bit; if it is a 1 then stop; else
read the next bit – this is the next information bit of the
segment; now start over, keeping track of the information
bits of the segment. Note that a segment can be empty
(have 0 information bits).

The full procedure to (try to) read a rule begins with
reading a segment for each of the predecessor, the first
successor (replacement node) and the second successor
(new node). Then, if possible, the six link-details bits
are read. For example:

Genotype: 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0

Decoding: +++ ->_1_ * _0_ * 0 1 1 1 0 0

+++ _1_ ->_0_ * _1_ * 1 0 0 0 0 0

Rules: 1. P -> Sr , Sn , link bits

any -> 1 , 0 , 0 1 1 1 0 0

2. P -> Sr , Sn , link bits

1 -> 0 , 1 , 1 0 0 0 0 0

Experimental World

To develop and validate the above, a simple ALife system
has been created. ‘Geb’ (after the Egyptian god of the
earth) is a two-dimensional toroidal world of artificial
organisms each controlled by a neural network using the
developmental system above. Evolution is strictly by
natural selection. There are no global system rules that
delete organisms; this is under their own control.

Geb’s world (figure 2) is divided into a grid of squares;
usually 20 × 20 of them. No two individuals may be
within the same square at any one time. This gives the
organisms a ‘size’ and puts a limit on their number. They
are otherwise free to move around the world, within and
between squares. As well as a position, each organism
has a forward (facing) direction, set randomly at birth.
Organisms are displayed as filled arcs, the sharp points
of which indicate their direction.

Figure 2: Geb’s world.

Initialization
Every square in the world has an individual with a single-bit
genotype ‘0’ born into it.

Main Loop
In each time step (loop), every individual alive at the start
of the cycle is processed once. The order in which the indi-
viduals are processed is otherwise random.
These are the steps involved for each individual:

• Network inputs are updated.
• Development – one iteration.
• Update all neural activations, including network outputs.
• Actions associated with certain network outputs are car-

ried out according to those outputs. These actions are
reproduce, fight, turn anti-clockwise, turn clockwise, and
move forward.

Neural network details: The axiom network con-
sists of three nodes with two excitatory links:

network input 001 7−→ 000 7−→ 01 network output

The network output node’s character (01) matches re-
production. The network input node’s character (left in-
put 01) matches this, without matching any of the other
action characters. Finally, the hidden node’s character
neither matches nor is matched by the other nodes’ or
the action characters.

Development takes place throughout the individual’s
life, although necessary limits on the number of nodes
and links are imposed.

Organism←→ environment interactions: Five
built-in actions are available to each organism. Each is
associated with network output nodes whose characters
start with a particular bit-string:

• 01* Try to reproduce with organism in front
• 100* Fight: Kill organism in front (if there is one)
• 101* Turn anti-clockwise
• 110* Turn clockwise
• 111* Move forward (if nothing in the way)



For example, if a network output node has the charac-
ter 1101001, the organism will turn clockwise by an angle
proportional to the node’s excitatory output. If an ac-
tion has more than one matching network output node
then the relevant output is the sum of these nodes’ exci-
tatory outputs, bounded by unity as within any node. If
an action has no output node with a matching character,
then the relevant output is noise, at the same level as in
the (other) nodes.

Both reproduce and fight are binary actions. They are
applied if the relevant output exceeds a threshold and
have no effect if the square in front is empty. Turn and
move forward are done in proportion to output.

When an organism reproduces with a mate in front of
it, the child is placed in the square beyond the mate if
that square is empty. If it is not, the child replaces the
mate. An organism cannot reproduce with an individual
that is fighting if this would involve replacing that indi-
vidual. Reproduction involves crossover and mutation.
Geb’s crossover always offsets the cut point in the sec-
ond individual by one gene, with equal probability either
way – which is why the genotype lengths vary. Mutation
at reproduction is a single gene-flip (bit-flip).

An organism’s network input nodes have their excita-
tory inputs set to the weighted sum of ‘matching’ output
nodes’ excitatory outputs from other individuals in the
neighborhood. If the first bit of an input node’s charac-
ter is 1 then the node takes its input from individuals to
the right hand side (including forward- and back-right),
otherwise from individuals to the left. An input node
‘matches’ an output node if the rest of the input node’s
character is the same as the start of the character of the
output node. For example, an input node with char-
acter 10011 matches (only) output nodes with charac-
ter’s starting with 0011 in the networks of individuals
to the right. Weighting is inversely proportional to the
Euclidean distances between individuals. Currently the
input neighborhood is a 5× 5 area centered on the rele-
vant organism.

Results

Kin similarity and convergence: When two Geb or-
ganisms (with networks developed from more than just
a couple of production rules each) reproduce, the child’s
network almost always resembles a combination of the
parents’ networks. Examination of networks from Geb’s
population at any time shows similarities between many
of them. The population remains nearly-converged, in
small numbers of species, throughout the evolution. The
criterion of a sufficiently correlated (implicit) fitness
landscape has been met by the developmental system,
making it suitable for long-term evolution.

Emergence of increasing complexity: Once Geb
has started, there is a short period while genotype
lengths increase until capable of containing a production

Figure 3: A dominant organism

rule. For the next ten to twenty thousand time steps (in
typical runs), networks resulting in very simple strate-
gies such as ‘do everything’ and ‘always go forwards and
kill’ dominate the population. Some networks do better
than others but not sufficiently well for them to display
a dominating effect.

In every run to date, the first dominant species that
emerges has been one whose individuals turn in one di-
rection while trying to fight and reproduce at the same
time. Figure 3 shows an example of such an individual,
after the user had dragged the nodes apart to make de-
tailed examination possible. Note the outputs o101, o01
[x2] and o100 (turn anti-clockwise, reproduce and fight).
Note also the large number of links necessary to pass
from inputs to outputs, and the input characters which
match non-action output characters of the same network
(o000 [x2], o00). Individuals of this species use nearby
members, who are also turning in circles, as sources of
activation (so keeping each other going).

Although a very simple strategy, watching it in ac-
tion makes its success understandable. Imagine running
around in a small circle stabbing the air in front of you.
Anyone trying to attack would either have to get their
timing exactly right or approach in a faster spiral – both
relatively advanced strategies. These individuals also
mate just before killing. The offspring (normally) ap-
pear beyond the individual being killed, away from the
killer’s path.

Because of the success of this first dominant species,
the world always has enough space for other organisms
to exist. Such organisms tend not to last long; almost
any movement will bring them into contact with one of
the dominant organisms. Hence these organisms share
some of the network morphology of the dominant species.
However, they can make some progress: Individuals have
emerged that are successful at turning to face the dom-
inant species and holding their direction while trying to
kill and reproduce. An example of such a ‘rebel’ (from
the same run as figure 3) is shown in figure 4.

Running averages of the number of organisms repro-
ducing and killing (figure 5) suggest that further species



Figure 4: A rebel
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Figure 5: Typical run (running averages).

emerge. However, organisms have proved difficult to an-
alyze beyond the above, even at the behavioral level. All
that can currently be said is that they share character-
istics of the previous species but are different.

Conclusions

The main conclusion is that the proposed approach is
viable. Although the behaviors that emerged are very
low-level, they are encouraging nonetheless, for the in-
creases in complexity were in ways not specified by the
design. It is difficult to evaluate any ongoing emergence,
because of the difficulty in analyzing later organisms.
Either tools to aid in such analysis will have to be con-
structed, or a more transparent system created.

In work involving pure natural selection, the organ-
isms’ developmental and interaction systems are analo-
gous to the fitness functions of conventional genetic al-
gorithms. While the general aim involves moving away
from such comparisons, the analogy is useful for recog-
nizing how the epistasis of fitness landscape issue trans-
fers across: Certain ontogenetic and interaction systems
can result in individuals with similar genotypes but very
different phenotypes. The results show that Geb’s de-
velopmental system does not suffer from this problem,
making it suitable for long-term incremental evolution.

This alone is a significant result for a modular develop-
mental system.

This work has made it clear that the specification of
‘actions’, even at a low-level, results in the organisms
being constrained around these actions and limits evolu-
tion. Alternatives in which the embodiment of organisms
is linked to their actions need to be investigated.
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