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Abstract and Ecolab (Standish, 2000). Previously only taxo-

nomic families in the fossil record have passed the

Bedau, Snyder & Packard's (1998) classification system for test.

long-term evolutionary dynamics provides a test for open- , . .
ended evolution. Making this ALife test more rigorous, and B_ed?u et al’s test is based on the followmg
passing it, are two of the most important open problems in  statistics (from Bedaet al,, 1997; Bedau, Snyder

the field. Previously (Channon, 2001) | presented the result :
that ‘Geb’, a system designed to verify and extend theories be- & Packard, 1998) which are calculated from the

hind the generation of evolutionary emergent systems (Chan- record of components’ existence times.

non & Damper, 2000), has passed this test. However | also AR
criticised the test, most significantly with regard to its normal- ACtIVIty Increment (by presence).

isation method for artificial systems. This paper details a mod-

ified normalisation method, based on component activity nor- Ai(t) = { (1)
malisation, that overcomes these criticisms. It then presents the

results of the revised test when applied to Geb, which indicate L L

that this system does indeed exhibit open-ended evolution. ~ This is not the only activity increment that they

have used, but it is the best for comparison across
systems because it can be calculated for any system
Introduction with a record of components’ existence times.
As the discipline of Artificial Life has developed, Evolutionary Activity of a component.
so has the need for quantifiable measures of suc- { t A7) if component exists at

1 if component exists att
0 otherwise

cess. This is especially true with regard to evolv-2:(t) =9 " otherwise

ability and open-ended evolution. Bedau et al. (Be- 2)
dau & Packard, 1991; Bedat al, 1997; Bedau, pjyersity (number of components present).
Snyder & Packard, 1998; Bedau & Brown, 1999) ,

have developed not only elegantly simple statisti- D(t) = #{i : ai(t) > 0} (3)
cal measures for long-term evolution, but also a testotal cumulative evolutionary activity (or just ‘total
for unbounded evolution. The test is so adaptablectivity’).

that it can be applied to any evolving system with Acum(t) =D a;(t) 4)
an available record of its components’ existence i

times, such as the biosphere’s fossil record. AnjMean cumulative evolutionary activity (or just
artificial system can be tested, and those that havénean activity’).

been include Tierra-like systems (Adami & Brown, - Acum(t)

1994; Taylor & Hallam, 1998), Echo (Holland, Acum(t) = D(t) (5)
1975), Bugs (Packard, 1989), Lindgren’s (1991) . . :
model of evolving strategies in the iterated pris-New evolutionary activity per component (or just

oner's dilemma, Arthur's (1994) “Bar Problem” new activity’).

- 1
1Source code and instructions for replicating the runs discussed Apew (t) = 7D ; Z ai(t) (6)
in this paper are available from the author's home page. ( ) i:ai(t)€lao,a1]



STATISTICAL SIGNATURE
CLASS | EVOLUTIONARY DYNAMICS D \ Anew \ Acum
1 none bounded | zero zero
2 bounded bounded | positive| bounded
3a | unboundedip) unbounded positive| bounded
3b | unboundedA...) bounded | positive | unbounded
3c unbounded® & A....) unbounded positive | unbounded

Table 1. Classes of evolutionary dynamics and their statistical signatures, based on table 1 from Bedau,
Snyder & Packard (1998) Rows 3b and 3c have been added to class 3 (see text).

For A,.,, to be a good measure of new activity, cial systems. The test relies on normalisation (or
the rangday, a,] should be chosen such that com-validation) from a shadow that can drift away from
ponent activities within it can be considered bothcore aspects of the real run that it is intended to
adaptively significant and not amongst the highestshadow. For example, the components that exist in
For artificial systems, a ‘shadow’ is run, mirroring the real population at any one time (well into evo-
the real run in every detail except that whenever sdution) are almost certainly more densely clustered
lection (artificial or natural) operates in the real systhan those in the shadow. So the mutation of a real
tem, random selection is employed in the shadowcomponent is more likely to produce another high-
The statistics from this shadow can then be used tactivity component than the mutation of a shadow
determinea, and levels of total and mean activity component. Once the real and shadow populations
that can be considered adaptively significant. have been allowed to evolve, we are no longer com-

After determining long-term trends in theseparing the real run with a true shadow. The longer
statistics, the system being examined can be cla#ie period since the shadow was initialised to match
sified according to table 1. The hallmark of class 3he real run, the less relevant the shadow is to the
(unbounded evolutionary dynamics) is unboundedeal run.

total cumulative evolutionary activity in combina- My other criticism of the test was in its use of
tion with positive new evolutionary activity per mean activity when looking for unbounded activ-
Component. Other pOSSibi”tieS exist with ZerOity growth’ especia”y when C|assifying a System as
Asew, but these belong in class 1 (no evolution-pelonging to class 3b. When diversity is bounded,
ary activity) because such cases have no signifietention (forever) of a single component results in
cant new components. Table 1 in Bedau, Snydelinbounded mean activity. The test should not be so
& Packard (1998) only shows the first row (3a) forjnfluenced by such components, and should rather
class 3, but footnote 1 in that paper acknowledgegok for trends in typical components. So it is me-
the other rows (3b and 3c). Note that table 1 ingjan activity, not mean activity, that should be mea-
cludes all possibilities for positivel,..,, because sured, and required to be unbounded for a system
Z€r0 Acum IMplies zerod,.,. So any system with 1o be classified as within class 3b.

unbounded evolutionary dynamics will belong 10 getore progressing to the two main contributions

class 3 (one of 3a, 3b and 3c). of this paper (the new normalisation method and its
Previously (Channon, 2001)‘ ! pr(?sented the regasyits when applied to Geb) it is first necessary to

sult that the artificial system ‘Geb” (Channon & ., jine how the statistics have been implemented in

Damper, 1998a,b, 2000) has passed this test. HoWsop, These details apply equally to both the origi-

ever | also criticised the test, most significantly, | 04 modified tests, which use the same statistics

with regard to its normalisation method for artifi- for the real run and only differ in their shadow and
2Note that Bedau has since altered his class numbering schemétS use in normalising the real run’s statistics.



Implementing the statistics in Geb plus link details’ from production rules that survive

Geb is a virtual world containing autonomous or-the filtering process. See Channon (2001) for de-
ganisms, each controlled by a neural network. Eachdils. Having chosen this component class, there is
neuron has a bit-string label, or ‘character’, whicha clear consequence for the possible classifications
is used during development and for matching th&f evolutionary dynamics. Because the number of
neural outputs of one organism with basic benheurons that an organism can have is limited (for
haviours (turning, killing, etc.) and with inputs of practical reasons), the number of production rules
other organisms. An organism is born with a simplehat can survive filtering is limited. And because
axiom network that results in reproduction. Thisthe population size is small (a maximum of four
develops through the application of a geneticalljhundred organisms), there is little room for more
determined Lindenmayer system (L-system) (Linthan a couple of species at a time. So diversity of
denmayer, 1968). Each L-system production ruléhese components will certainly be bounded, and
has the following form: we can rule out class 3a and 3c dynamics.
] Geb’s shadow mirrors the real run in every de-
P = Sr, 83 b, bz, bs, ba, bs, b tail except that selection is random. Whenever a
P Predecessor (first bits of node’s character)real organism is killed, a randomly chosen shadow
S, Successor Ireplacemenhode’s character organism is also killed. Whenever a real organ-
Sn Successor Znewnode’s character ism is born (as the product of two real organisms),
bits: by, by, bs, by, b5, b Specify linkage details  a new shadow organism is born as the product of

The successor§l and 2) are characters for the two randomly chosen shadow organisms, using the
node(s) that replace the old node. If a success&@me reproduction procedure with the same rates
has zero length then that node is not created. of crossover and mutation. For each initial real or-

An evolved genotype contains a large number og@nism born with single-bit genotype ‘0", an initial
production rules (once decoded), but only the rule§hadow organism is also born with single-bit geno-
found to match neuron’s characters most closeljype ‘0'.
are used during development. In this way, increas- Component snapshots were taken every one
ingly specific production rules can evolve, with re-thousand timesteps. To put this in context, the
gressive rules existing as fall-back options should @ample run reported lasted six million timesteps,
rule be damaged by crossover or mutation, and a@uring which time there were over five hundred
material for further evolutionary exploration. and eighty million organism reproductions. In each

When a new organism is ‘born’, all possible pro-timestep, every organism is updated. Because ac-
duction rules are decoded from its genotype. Thetfivity is intended as a measure of how much a
the developmental process is part-simulated in adsomponent both is used (already covered above)
vance of it truly taking place, as a means of filter-and persists | screen out (in each of the real and
ing out all the production rules that would never beshadow populations) isolated occurrences: when a
used, either because they would never match ar§omponent occurs in the current snapshot but not
possible node’s character, or because more specifige previous one.
rules exist for each node that could develop. All In previously published work on Geb (before the
rules that remain will be used if the organism livesimplementation of evolutionary statistics), total ex-
long enough. tinction (population size dropping to one individ-

This makes the choice ‘production rules that surual) was not mentioned because it had not been en-
vive the filtering process at birth’ a good choice forcountered. However, there was no mechanism in
the component class. It turns out that there is a higplace to prevent it and, during the long trial runs
degree of neutrality in successors, making thenundertaken when experimenting with evolutionary
difficult to track. So a better choice for the compo-statistics, | encountered occasional runs in which
nent class, and the one | have used, is ‘predecessimtal extinction occurred. So for the set of runs



are also reported and discussed. Figure 2 shows the
raw real and shadow activity wave diagrams from
the typical run. One obvious feature is that many of
the waves keep increasing. As discussed in Chan-
non (2001), this would also be true in a similar
\ analysis of the biosphere’s evolution. Genes that
- are beneficial to life tend to become basic for many
species: humans have a significant proportion of
Time genes in common with mice, flies and even plants.
Shadow waves follow the real waves, because the
Figure 1: lllustration of the shadow-resettingshadow is reset after each snapshot. The shadow
method. loses components between snapshots far more fre-
quently than the real run does. This is especially
from which the example reported here is taken, true of the lower-activity components, as we should
set a minimum number of organisms to twenty. Theexpect. Adaptively significant production rules
fact that total extinction is so rare despite the popuhave many redundant copies on a typical genome
lation size being so small (a maximum of four hun-such that should mutation break the rule at one
dred organisms at any one time) indicates that thergoint, it will still be decoded from elsewhere on the
is no serious problem here. Once population sizegenome. Such components can survive even sus-
can feasibly be increased, the problem should itained periods of random selection. Yet even the

Statistic

practice disappear rapidly. highest activity components are frequently lost in
. the shadow and this provides verification that the
The shadow-resetting method snapshot interval (one thousand timesteps) is suffi-

Because there is reason to doubt a method of nofient for comparing activity by presence. Employ-
malising (or validating) evolutionary statistics thating @ much higher reset frequency would require
relies on a shadow that can drift away from core asthe use of an activity increment function which is
pects of its real run, a new method needed to be déensitive to the number of occurrences of a compo-
veloped that regularly resets the shadow (both conf2ent at any one tinfe for exampleA;(t) = frac-
ponents and activity history) to be identical to thetion of organisms that have th&" component at
real run. The rest of this paper details the develtime ¢. However, because significantly more fre-
opment of such a method and reports on its resul@uent snapshots are not feasible with the computa-
when applied to Geb. tional resources currently available, comparing ac-
The basic idea is that immediately after eacHiVity by presence is still the best option.
snapshot (when an entry is made in the compo- Of course it would not make sense to calcu-
nent existence record), the shadow run has its conal€ activity statistics based solely on the shadow’s
ponents reset to those of the real run. This alcOmponent existence record. Perhaps the most ob-
lows us to compare inter-snapshot changes in a®Jous course of action (and the one | took at first) is
tivity in the real run with the changes we would ex-0 calculate activity statistics for the shadow on the
pect from random selection, the result being an imPasis that at each timestepve use the real run's
proved generic shadowing mechanism. When cafcomponent record for timesteps befareand the
culating evolutionary statistics (and indeed wherphadow’s component record &t Figure 3 shows
recording component numbers), the shadow’s highe resulting statistics from the shadow, alongside
tory is taken to be that of the real run - see figure 1the real run's statistics. Activity (total, mean and

Most of the results below are from a typical run, median) is unbounded in the shadow only because
drawn from a set of twenty carried out using thisthe shadow has its components reset to those of the

procedure. Atypical variations found within this set  Thanks to Mark Bedau for bringing this to my attention.
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Figure 2: Activity wave diagrams for the real (left) and shadow (right) runs, with all horizontal (no-
increase) lines removed. The lower diagrams show a magnified view of the activity range below 1 million.

real run after each snapshot. On average both totalring new activity. So naively calculating the
activity and diversity drop sharply in the shadowshadow’s activity statistics leads us to a dead-end.
over each short (1000 timesteps) interval after iThe idea of resetting the shadow run’s state to
has been reset to the real run’s state. The shadowsatch the real run’s state just after each snapshot
mean and median activity statistics show that (ons a good one, but how can it be used to normalise
average) it is the higher activity components thathe real run’s statistics?

remain in the shadow, in agreement with the discus-

sion (above) of the activity wave diagrams. Do not Component activity normalisation

be confused by the fact that mean and median activrhe solution is to normalise at the lower level of

ity increase in the shadow over each inter-snapsh@idividual components’ activities, rather than at
interval. This is due to the loss of lower activity the component-population level. This is done by
components, not the result of any increase in coMsyptracting the shadow’s component activity incre-
ponent activity. ment from the real run’s component activity incre-
These results are encouraging, but they providenent, for each component. So when calculating
no route to normalising the real run’s statistics inactivity by presence, a component’s normalised ac-
order to demonstrate a presence or lack of untvity is incremented if and only if it persists (and
bounded growth in, say, median activity. Theis used) in the real run but not in the shadow, and is
method so far also provides no sound way of meadecremented if and only if it persists (and is used)
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Figure 3: Total activity, mean activity, new activity and diversity from a typical Geb run and its regularly-
reset shadow. Running averages are shown in white: solid for the real run, dashed for its shadow.

in the shadow but not in the real run (although accounting the number of components whose nor-
tivity will still be read as zero for that timestep). malised activity has passed the threshold at which

Here are the revised statistics:

Real run’s component activity increment.

1 if component exists
in the real run at (7)
0 otherwise

AR(r) =

Shadow’s component activity increment.

1 if component exists
in the shadow at (8)
0 otherwise

AS() =

Normalised component activity increment.
AN (t) = A1) — AF(2) 9)
Normalised component activity.

>t _o AN(7) if component exists

aN(t) = in the real run at
0 otherwise
(10)
Normalised diversity.
DN(t) = #{i - ad(t) > af} (1)

Note that this formula forD is only a sugges-

we consider them to be adaptively significant (see
below). This method of normalising diversity is
debatable. However, because Geb does not ex-
hibit unbounded diversity | safely ignore that de-
bate here, and do not calculate’ for Geb. This

is valid because no claim of unbounded diversity is
being made, and becausg® (not DY) is the rele-
vant value to use when calculatingy’__, AN and
AN . becauseD® is the number of components
that contribute to those statistics. Normalised to-

tal cumulative evolutionary activity.

A= > a'(®)

.. component i exists
“intherealrunatt

(12)

Normalised mean cumulative evolutionary activity.
- AN (¢t
AN (t) — cum( )

DR(t)

cum
Normalised median cumulative evolutionary activ-
ity.

(13)

A(t) = Median  o¥()  (14)
St
Normalised new activity per component.
1
AN () = —— Nt 15
new( ) DR(t) Z a; ( ) ( )

2:component i ‘new’

tion for how diversity could be normalised when See below for the details of calculating normalised
investigating systems with unbounded diversity: bynew activity per component.



This is clearly the better approach, for it pro- This method can be expected to work well when
duces normalised component activities that meaactivity is calculated by presence (as it is in Be-
sure how much each component’s activity has indau and Packard’s test and so also here), where
creased above the increase that would have ochanges in component activith() are small when
curred had selection been random. So a compa@ompared with the activities of non-adaptive com-
nent’s normalised activity is a direct measure of thgponents. However, we should not expect it to pro-
degree to which adaptive selection in the real run iside a good bound when calculating activity by, for
causing the component to persist (and be used). example, usage; = #components i at t), where

the most negative activities arise from neutral mu-
Determining the normalised neW-aCtiVity criteria tations of h|gh usage ComponentS, some of which a

The final requirement, before these statistics can b&hadow will encounter before its real run does.
used to classify evolutionary dynamics, is a method
of determining when a component is newly adap-
tively significant: Clearly the method from Bedau, Figure 4 shows the normalised activity waves from
Snyder & Packard (1998) cannot be used with théhe typical run, already discussed above, drawn
revised shadowing mechanism. The method mugtom the full set of twenty runs. Notice that the
provide a (normalised) activity levef) at which activity values are significantly lower than before

a component can be considered adaptively signifaormalisation - see figure 2.

icant, and a procedure for dropping a component In each of the twenty runs, the lowest normalised
from the list of new components. For the secondactivity encountered was greater than -30, with -10
of these concerns, a simple upper bound cannot d&ing a more typical value. For simplicity | used a
used, because normalised activity can both increasew-activity thresholdd(') of 30 on all runs. Fig-

and decrease, so a component could potentially h&re 5 shows the resulting statistics for the typical
considered ‘new’ forever. The simplest (and ad+un. Normalised median activity is unbounded (as
equate) solution is to consider a component to bare normalised total activity and normalised mean
‘new’ (newly adaptively significant) in the snap- activity) and normalised new activity is positive.
shot at which its activity reaches’, and never after These results clearly fall into class 3b (according to
that. So each component is considered new at mostis classification system): unbounded evolution-
once. This leaves the issue of determinii)g ary activity.

If the presence or absence of a component con- These results are typical of the twenty runs car-
fers no adaptive advantage or disadvantage, thered out for this set of experiments. However, five
the real and shadow systems are equivalent for thisf the runs encountered problems, causing their re-
component. Further, which is used as the reset-tsults to be atypical. Three of these effectively met
system (after each snapshot) makes no difference total extinction. In the implementation section |
the component’s activity. So the (normalised) achoted that | imposed a minimum limit on the num-
tivity distribution for this class of components will ber of organisms, in an attempt to avoid total ex-
be symmetric about the origin. Therefore, providedinction. However, if population size hits this limit
we can make the assumption that the most negand does not increase rapidly, then many repro-
tive normalised activity encountered during a runductions may occur with selection effectively ran-
is from such a component, we can negate this valudom. This causes evolutionary activity to plummet
to find a level at which normalised activity can beas adaptive traits are lost. Once lost, this activity
considered adaptively significant. Even if this as-cannot be regained, except by the evolution of new
sumption does not hold, negating the most negativadaptive components. These results are not a cause
activity encountered provides a value above whiclor concern, for the same reasons mentioned above:
activity can be considered adaptively significantonce population sizes can feasibly be increased, the
even if this bound is higher than necessary. problem should in practice disappear rapidly.

Results and Discussion
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Figure 4: Normalised activity wave diagrams. Those on the right have had all horizontal (no-increase)
lines removed. The lower diagrams show a magnified view of the activity range below 0.5 million.

Each of the other two atypical runs stagnated It is easy to demonstrate that unbounded growth
when the only existing species stopped reprodugor more accurately unbounded non-monotonic but
ing. Of course this would ordinarily be a very poor directedincrease) in activity, with positive new ac-
strategy. It is easy to imagine how the bad gendvity, is not a trivial consequence of unbounded
(production rule) could have spread through a popgenotype length. Consider the analogous system
ulation of just one species as fit individuals repro-Geb?, in which selection is random but all other
duced with the new unfit ones, causing their chil-details are as in Geb. Whenever a (randomly cho-
dren to pick up the dominant bad gene. Howeversen) real organism is killed in GEpa randomly
one would not expect this to pose a threat to a difchosen organism is also killed in its shadow. When-
ferent species. This is easily verified: introducingever a real organism is born in Gélfas the prod-
just a few organisms from any of the other evolveduct of two randomly chosen real organisms), a new
populations (from the other runs), causes the oldhadow organism is born as the product of two ran-
organisms to be rapidly displaced by the newcomdomly chosen shadow organisms. Of course run-
ers. So this result is also not a cause for concerming either real or shadow system from the same
for the same reason: it is due to the small populasnapshot more than once would produce different
tion size, which cannot support more than one oresults on each run, because of the stochastic na-
two species at a time. Note also that both types diure of the systems. So normalised activity would
atypical run were also seen in Channon (2001). unfold as a random walk, with ‘step’ probability
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Figure 5: Normalised total activity, normalised mean activity, normalised median activity, normalised new
activity, and real diversity. Running averages are shown in white.

distribution changing at each snapshot but always Geb has demonstrated class 3 behaviour: un-
symmetric about zero. bounded evolutionary activity. And this time we
Could unbounded growth in activity, with posi- can have a greater degree of confidence in the re-
tive new activity, be a trivial consequence of un-sults. However, this is a new variant of a previous
bounded genotype length in a biotic selection systest, and it is not beyond possibility that it could
tem? Certainly not, for new activity drops to be improved upon. Certainty in these results can
zero in systems such as Tierra. Could unboundednly come about through the application of the test
growth in activity be a trivial consequence of un-to a range of evolutionary systems. That may take
bounded genotype length in a biotic selection syssome time, since there are no other known artifi-
tem that exhibits unending positive new activity?cial systems that even pass the original test. So for
No, because the requirement remains that activitpow we must be content with the conclusion that
be retained, so that it can accumulate. For exanthere is reason to believe that this system exhibits
ple, a (diversity-bounded) biotic selection systenmunbounded evolution.
that continually generates new components only by
mutation along (phenotypically) neutral networks While the caution of the previous paragraph is
would only be able taisea finite number of neu- warranted, it is at least possible to say with cer-
tral variants at any one time. It would lose activity tainty that these results qualitatively surpass those
whenever a component is lost from (ceases beinfyjom previous artificial evolutionary systems. No

used in) the system. previous biotic selection artificial evolutionary sys-
_ tem has demonstrated unbounded evolutionary ac-
Conclusions tivity with positive new activity. As such these

Both of my criticisms of the original test have beenresults provide validation of the theory behind
addressed. The revised shadowing method usd8eb’s design: a design constructed to satisfy the
here ensures that the normalisation of statistics iset of requirements for an evolutionary system
through a shadow that remains true to its real runwithin which increasingly complex advantageous
and median rather than (or rather as well as) mealpehaviours can emerge, as uncovered by evaluating
activity has been used in the classification. previous artificial systems.
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