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Abstract

Evolutionary emergence is the key to generating increasingly socially intelligent
agents.  In order to generate agents with novel behaviors beyond our manual design
capability, long-term incremental evolution with continuing emergence within a social
environment is called for.  Purely artificial selection models are argued to be
fundamentally inadequate for this calling and a new natural selection system
containing simple virtual agents is presented.  Each agent is controlled by a
genetically determined neural network − controllers suited to both incremental
evolution and the goal of intelligent behaviors.  Resulting evolutionary emergent
social behaviors are reported alongside their neural correlates.  In one example, the
collective behavior of one species clearly provides a selective force which is
overcome by another species, demonstrating the perpetuation of evolutionary
emergence via naturally-arising social coevolution.
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1. Introduction

The aim of generating intelligent behaviors in artificial agents presents us with the problem that
we do not understand such intelligence well enough to program it into a machine.  Therefore, we
must either increase our understanding until we can, or create a system which outperforms the
specifications we can give it. The first possibility includes the traditional top-down methodology,
which is clearly inappropriate.  Ryle (1949) long ago pointed out the futility of attempts to define
intelligence, since they must invoke the 'ghost in the machine' fallacy: we can never observe
intelligence directly;  we can only define that some behaviors are more intelligent than others.
      The first option also includes manual incremental (bottom-up) construction of agents with the
intention of increasing our understanding and ability to model intelligence.  The aim here is to
build increasingly impressive agents, retaining functional validity by testing them within their
destination environments.  However, bearing in mind the fundamentally distributed nature of
intelligent behaviors, it is unlikely that human designers will be capable of manually producing
intelligence beyond a rudimentary level.
      Further, the first option tends to be at odds with the general-purpose nature of intelligence.
To argue that creating general-purpose intelligence is too vague or hard a problem and that
research should deal first with specific, static behaviours is analogous to advising Charles
Babbage to think first about designing a machine to sort coins (say), before tackling the more
demanding issues involved for a general-purpose computing machine.  Such arguments
completely miss the point.  The way forward is to tackle the issue in its entirety.
      The second option is to create systems which outperform the specifications given them and
which are open to producing intelligent behaviors comparable with those of (albeit simple)
natural agents.  Evolution in nature has no (explicit) evaluation function.  Through agent-
environment interactions, certain behaviors fare better than others. This is how the non-random
cumulative selection works without any long-term goal;  it is why novel structures and behaviors
emerge.



2. The need for sociality and natural selection

Because this approach requires evolution to be self-incremental, other parts of the environment
(not just our so far isolated agent) must also evolve.  The most obvious solution is to realize other
agents as the evolvable part of the environment.  Thus coevolution can occur through agent-agent
interactions − socially.
      The use of coevolutionary models is fast becoming a dominant approach in the adaptive
behavior field.  This is essentially a response to the problems encountered when trying to use
artificial selection to evolve complex behaviors.  However, artificial selection has kept its hold so
far − most systems still use fitness functions.  Much of this work is based on the 'Red Queen' or
'Arms Race' phenomenon (see Cliff and Miller, 1995; Dawkins and Krebs, 1979), an early
example of which is Hillis' coevolution of sorting networks and their test cases.  Hillis concluded
his paper with the statement: "It is ironic, but perhaps not surprising, that our attempts to improve
simulated evolution as an optimization procedure continue to take us closer to real biological
systems'' (Hillis, 1990, page 233).
      As with Hillis' paper, the reasoning given for imposing coevolution is often that it provides "a
useful way of dealing with the problems associated with static fitness landscapes'' (Bullock, 1995,
section 5). It appears that few of those working with artificial selection intentionally use
coevolution as a step towards intrinsic evolution. Notably, Reynolds (of 'Boids' fame) worked
towards more automatic evolution by coevolving simulated mobile agent controllers which
competed with each other in games of 'tag' (Reynolds, 1994).  This eliminated the need to design
a controller in order to evolve a controller, as required in his previous work (Reynolds, 1992).
      Emergence is related to qualitatively novel structures and behaviors which are not reducible
to those hierarchically below them.  It poses an attractive methodology for tackling Descartes'
Dictum: "how can a designer build a device which outperforms the designer's specifications?''
(Cariani, 1991, page 776).  Most importantly, it is necessary for the generation of agents with
intelligent behaviors beyond our manual design capability.
      Cariani identified the three current tracts of thought on emergence, calling them
"computational'', "thermodynamic'' and "relative to a model'' (Cariani, 1991).  Computational
emergence is related to the manifestation of new global forms, such as flocking behavior and
chaos, from local interactions.  Thermodynamic emergence is concerned with issues such as the
origins of life, where some degree of order emerges from noise.  The emergence relative to a
model concept deals with situations where observers need to change their model in order to keep
up with a system's behavior.  This is close to Steels' concept of emergence, which refers to
ongoing processes which produce results invoking vocabulary not previously involved in the
description of a system's inner components − "new descriptive categories'' (Steels, 1994, section
4.1).
      Evolutionary emergence falls into the 'emergence relative to a model' category.   An example
will clarify the divisions.   Consider a virtual world containing agents that can move and try to
reproduce or kill according to rules which are sensitive to the presence of other agents and which
evolve under natural selection.  Should flocking manifest itself in this system, perhaps due to
agent diversification into predators and prey, we could classify it as emergent in two senses:
firstly in the 'computational' sense from the interaction of local rules, flocking being a collective
behavior, and secondly in the 'relative to a model' sense through the evolution, the behavior being
novel to the system.   While the first is also relevant to our goal, in that complex adaptive systems
will involve such emergence, the second sense is the key to understanding evolutionary
emergence.
      Artificial selection can only select for that which is specified.  Therefore anything that
emerges during evolution must result from another aspect of selection, which must in turn arise
from the innate dynamics of the system − natural selection.   In the context of evolutionary
emergence, any artificial selection used constitutes just one of the parts of a system.



Figure 1: The experimental world (Geb)

3. Experimental model

A system believed to be suited to the incremental artificial evolution of socially intelligent agents
by natural selection has been created.  'Geb' (named after the Egyptian god of the Earth) is a two-
dimensional toroidal virtual world containing agents, each controlled by a neural network.  The
networks are produced from bit-string genotypes by a developmental process based on L-systems.
Neural controllers were chosen because of their suitability for both incremental evolution (due to
their graceful degradation) and the goal of intelligent behaviors.   Evolution within Geb is strictly
by Natural Selection. There are no global system rules that delete agents; this is under their own
control.
      Geb's world (figure 1) is divided into a grid of 20 × 20 areas (squares).   At most one
individual may occupy an area at any one time. This effectively gives the agents a size within the
world and puts a limit on their number.  Individuals are otherwise free to move around the world,
within and between areas.  As well as a position within the world, each agent has a forward
(facing) direction, set randomly at birth.   Agents are displayed as filled arcs, the sharp points of
which indicate their direction. This is Geb's main algorithm:

Initialization
Every square in the world has an individual with a single-bit genotype '0' born into it.

Main Loop
In each time step (loop), every individual alive at the start of the cycle is processed once.  The order in
which the individuals are processed is otherwise random.
These are the steps involved for each individual:

1. Network inputs are updated from the outputs of neighboring agents.
2. Development − one iteration of the ontogenesis mechanism.
3. All neural activations, including network outputs, are updated.
4. Actions associated with certain network outputs are carried out according to those outputs.

      Each agent is born with an axiom network (of just three neurons) that generates reproductive
behavior.  Each node has a bit-string 'character' assigned to it.  This is used by the genetically
determined developmental process and by the interaction system.  The developmental process
involves dividing and destroying nodes in ways that either preserve the links between surviving
nodes or creates new ones.  Each time a node is divided, its character is changed.  A character-
based method of matching up agents' inputs and outputs ensures that the addition or removal of an
input/ output node at a later stage of development or evolution will not damage the relationships
of previously adapted interactions.



3.1. The neurons

The neural networks used in Geb are recurrent networks of nodes as used successfully by Cliff,
Harvey and Husbands in their evolutionary robotics work (figure 2).

Figure 2: Schematic of a neuron, from (Cliff, Harvey and Husbands, 1992)

      All links have unit weight;  no lifetime learning is used.  This is to avoid the criticism that
lifetime learning may be the main factor.

3.2. Agent ↔ environment interactions

There are five built-in actions available to each agent.  Each is associated with network output
nodes whose characters start with a particular bit-string:

1. 01*   Try to reproduce with agent in front
2. 100*  Fight: Kill agent in front (if there is one)
3. 101*  Turn anti-clockwise
4. 110*  Turn clockwise
5. 111*  Move forward (if nothing in the way)

      For example, if a network output node has the character 1101001, then the agent will turn
clockwise by an angle proportional to the excitatory output of that node.  If an action has more
than one matching output node then the relevant network output is the sum of these nodes'
excitatory outputs, bounded as within any node.  If an action has no output node with a matching
character, then the relevant network output is noise, at the same level as in the (other) nodes.
      Both reproduce and fight are binary actions.  They are applied if the relevant network output
exceeds a threshold and have no effect if the square in front is empty.  Turning and moving
forward are done in proportion to excitatory output.
      When an agent reproduces with another in front of it, the child is placed in the square beyond
the other individual if that square is empty.  If the square is not, the child replaces the individual
being mated with.  An agent cannot reproduce with an individual that is fighting if this would
involve replacing the fighting individual.
      Reproduction involves crossover and mutation.  Geb's crossover always offsets the cut point
in the second individual by one gene (bit position), with equal probability either way.  This is why
the genotype lengths vary.   Mutation at reproduction is a single gene-flip (bit-flip) on the child
genotype.
      An agent's network input nodes have their excitatory inputs set to the weighted sum of
'matching' network output nodes' excitatory outputs, from other individuals in the neighborhood.
If the first bit of a network input node's character is 1 then the node takes its input from
individuals to the right hand side (including forward- and back-right), otherwise from individuals
to the left.  A network input node 'matches' a network output node if the rest of the input node's
character is the same as the start of the character of the output node.  For example, a network
input node with character 10011 matches (only) network output nodes with characters starting
with 0011 in the networks of individuals to the right.  The weights are inversely proportional to
the Euclidean distances between individuals.  Currently the input neighborhood is a 5 × 5 square
area centered on the relevant agent.
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      Notice that the network output nodes with characters 0, 1, 10, 11 and all those starting with 00
produce no action.  However, their excitatory values can still be input by other individuals.  Thus
there is the potential for data exchange not directly related to the actions.

3.3. The developmental system

A context-free L-system was designed for the evolution of networks of the neurons outlined
above.  Specific attention was paid to producing a system in which children's networks resemble
aspects of their parents'.
      Every node is processed once during each developmental step.  The production rule that best
matches the node's character is applied (if there is one). A rule matches a node if its predecessor
is the start of the node's character.  The longer the matching predecessor, the better the match.
Thus ever more specific rules can evolve from those that have already been successful.
      The production rules have the following form:

P → Sr,Sn   ;   b1,b2,b3,b4,b5,b6      where:

P Predecessor (initial bits of node's character)
Sr Successor 1: replacement node's character
Sn Successor 2: new node's character
bits: link details [0=no,1=yes]:
(b1,b2) reverse types [inhibitory/excitatory] of

(input, output) links on  Sn
(b3,b4) (inhibitory, excitatory) link from S r to Sn
(b5,b6) (inhibitory, excitatory) link from S n to Sr

      If a successor has no character (0 length) then that node is not created.  Thus the predecessor
node may be replaced by 0, 1 or 2 nodes.  Necessary limits on the number of nodes and links are
imposed.
      The 'replacement' successor (if it has a character) is just the old (predecessor) node, with the
same links but a different character.  The 'new' successor (if it has a character) is a new node.  It
inherits a copy of the old node's input links unless it has a link from the old node (b3 or b4).  It
inherits a copy of the old node's output links unless it has a link to the old node (b5 or b6).
      New network input nodes are (only) produced from network input nodes, and new network
output nodes are (only) produced from network output nodes. The character-based method of
matching up network inputs and outputs ensures that the addition or removal of a network input/
output node at a later stage of development or evolution will not damage the relationships of
previously adapted network inputs and outputs.
      The axiom network consists of three nodes with two excitatory links. The network output
node's character (01) matches reproduction, the network input node's character (left input 01)
matches this without matching any of the other action characters, and the hidden node's character
neither matches nor is matched by the other nodes' or the action characters:

 network input  001           000            01  network output

       Details of the theory behind the choice of developmental system can be found in (Channon
and Damper, 1998a).



3.4. The genetic decoding

The genetic decoding of production rules is loosely similar to that of Boers and Kuiper (1992).
For every bit of the genotype, an attempt is made to read a rule that starts on that bit.  A valid rule
is one that starts with 11 and has enough bits after it to complete a rule.
      To read a rule, the system uses the idea of 'segments'.  A segment is a bit string with its odd-
numbered bits (1st, 3rd, 5th, ...) all 0.  Thus the reading of a segment is as follows:  read the
current bit; if it is a 1 then stop; else read the next bit − this is the next information bit of the
segment; now start over, keeping track of the information bits of the segment.  Note that a
segment can be empty (have 0 information bits).
      The full procedure to (try to) read a rule begins with reading a segment for each of the
predecessor, the first successor (replacement node) and the second successor (new node).  Then,
if possible, the six link-details bits are read.  For example:

Genotype: 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0
Decoding: +++ ->_1_ * _0_ * 0 1 1 1 0 0
            +++ _1_ ->_0_ * _1_ * 1 0 0 0 0 0
Rules: 1.  P  -> Sr ,  Sn , link bits
          any -> 1  ,  0  , 0 1 1 1 0 0
       2.        P  -> Sr ,  Sn , link bits
                 1  -> 0  ,  1  , 1 0 0 0 0 0

4. Results

The system has demonstrated non-trivial incremental species evolution and emergence.  This
alone is an advance on previous natural selection systems − see Channon and Damper (1998b).
Further, some of the behaviors that have emerged demonstrate (very) rudimentary social
intelligence, including both social cooperation and social competition.  These cannot be directly
explained in terms of artificial selection or any other aspect of the initial system specification
(program).
      Note that the evolutionary concept of species is being used, emphasizing the cladistic
(branching) nature of speciation and allowing for interbreeding species.  A cross between
individuals of different species will probably produce either a very unfit child (which may not
develop into a viable adult) or a new member of one of the existing species (the child inheriting
only a few genes from one species that are not common to the other).  This latter possibility is
very much more likely within artificial systems with short genotypes and few genes than in nature.
Other issues of species evolution in artificial systems have been addressed by Harvey's 'Species
Adaptation Genetic Algorithm' theory (Harvey, 1992).

4.1. Emergent social behavior       cooperation

Once Geb has started, there is a short period while genotype lengths increase until capable of
containing a developmental rule.  For the next ten to twenty thousand time steps (in typical runs),
networks resulting in very simple strategies such as 'do everything' and 'always go forwards and
kill' dominate the population.  Some networks do better than others but not sufficiently well for
them to display a dominating effect on the display of Geb's world.
      In every run to date, the first dominant species that emerges has been one whose individuals
turn in one direction while trying to fight and reproduce at the same time.  Figure 3 shows an
example of such an individual.  Note the network outputs o101, o01 [x2] and o100 (turn anti-
clockwise, reproduce and fight).  Note also the large number of links necessary to pass from
network inputs to outputs, and the network input characters which match non-action output
characters of the same network (o000 [x2], o00).  Individuals of this species use nearby members
of the same species, who are also turning in circles, as sources of activation (so keeping each
other going).



Figure 3: A dominant agent's neural network

Figure 4: A rebel agent's neural network

      Although a very simple strategy, watching it in action makes its success understandable.   The
individuals keep each other moving quickly, in tight circles.  Any attacking agent would have to
either get its timing exactly right or approach in a faster spiral − both relatively advanced
strategies.  These individuals also mate just before killing. The offspring (normally) appear
beyond the individual being killed, away from the killer's path.

4.2. Naturally arising coevolution       competition

Because of the success of this first dominant species, the world always has enough space for other
agents to exist.  Such agents tend not to last long;  almost any movement will bring them into
contact with one of the dominant agents, helping that species in its reproduction as much as
themselves.  Hence these agents share some of the network morphology of the dominant species.
However, they can make some progress: Individuals have emerged that are successful at turning
to face the dominant species and holding their direction while trying to kill and reproduce.  An
example of such a 'rebel' (from the same run as figure 3) is shown in figure 4. Note that most
rebels have many more nodes and links;  this one was picked for its clarity.
      Further, 'running averages' of the number of agents reproducing and killing (figure 5) suggest
that further species emerge, indicating perpetuating evolutionary emergence.  However, agents
have proved difficult to analyze beyond the above, even at the behavioral level.  All that can
currently be said is that they share characteristics of the previous species but are different.
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Figure 5: Typical run (running averages of population sizes by actions)

5. Conclusions

Rather than specifying behavioral descriptions, the approach used here acknowledges
evolutionary emergence as the underlying force behind socially intelligent behaviors.  While
computational emergence can arise via artificial selection, evolutionary emergence requires
natural selection.  The logical progression or aim is the perpetuation of evolutionary emergence
via naturally arising coevolution.  However, this requires long-term incremental evolution and so
what we evolve must be chosen accordingly.  Neural networks are a clear choice, because of their
graceful degradation (high degree of neutrality) and suitability for the goal of intelligent
behaviors.
      Social agent research should be leading the way, through the natural selection of neural
controllers, towards the emergence of ever more intelligent behaviors.  The work discussed in this
paper has started down that route, with some success. Geb has proven to be suitable for long-term
incremental artificial evolution.  The behaviors identified are encouraging too, for the increases in
complexity were in ways not specified by the design − evolutionary emergence, and some of the
behaviors demonstrate (very) rudimentary social intelligence.
      Whether or not emergence is continuing in Geb is hard to tell, for it soon becomes difficult to
identify behaviors; evolved neural networks are hard to understand and so offer little help.
Constructing systems such that behaviors will be more transparent is likely to be the most
productive way forward.
      A further problem is that specifying the available 'actions' constrains agents around these
actions and so limits evolution.  Despite showing the important new result of evolutionary
emergent behaviors (not specified within the initial system) within a social system suited to long-
term incremental evolution, all basic (inter-)actions were as specified within the initial system and
not evolvable.  At a later stage, alternatives in which the evolvable embodiment of an agent gives
rise to its actions will need to be considered.  Then the number of possible social interactions will
be unlimited by design, encouraging the evolutionary emergence of socially intelligent agents.
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