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Abstract
This paper outlines a preliminary step towards

the long-term goal of intelligent artificial life.
Evolutionary emergence via natural selection is
proposed as the way forward, in combination with
other biologically-inspired principles including the
developmental modularity of neural networks. In
order to develop and test the ideas, an artificial
world containing autonomous organisms has been
created. Its underlying theory and construction
are described. Resulting emergent strategies are
reported both from an observer’s perspective and
in terms of their neural mechanisms. The results
prove that the proposed approach is viable and
show it to be an exciting area for further research.

1 Introduction

The interest of this work is the generation of intelligence
worthy of comparison with that found in natural life,
even if only at a rudimentary level. This requires the
creation of systems that adapt to behave in ‘intelligent’
ways within an environment, without being given any
information about how to do so.

The approach taken here is based on the only known
systems exhibiting such intelligence: organisms with ner-
vous systems as evolved in nature. Thus the method used
is evolution by natural selection, and the objects being
evolved are organisms controlled by artificial neural net-
works. Other related principles believed necessary are
also copied from nature.

The use of natural selection as opposed to the fitness-
function based artificial selection of conventional genetic
algorithms is an important aspect of this work. Increas-
ingly complex behaviours can emerge, as in nature, via
the co-evolution of similarly-capable systems.

One issue worth clarifying at the start is that of func-
tional validity with respect to the destination environ-
ment, or ‘situation within a world’. Brooks [3, 4] puts
forward the argument that incremental development (in-
cluding evolution) must take place within the world that
the objects are intended to operate in. This is to avoid
problems common in traditional artificial intelligence, of-
ten caused by a divide between a system and the real

world. So, for example, some people argue that robots
that are to operate in the real world must be evolved
(or at least evaluated) in the real world. However, the
organisms considered here only ever operate in an artifi-
cial world and so there should be no concern about them
being evolved in that world. Their world is not a simula-
tion and so suffers none of the problems that occur when
trying to use a simulation to evolve robots for the real
world. Where the artificial world differs from our world
(however greatly), there is no problematic error. There
is simply a difference.

The rest of this paper is organised as follows:
• Background
– Evolutionary emergence
– Development in artificial neural networks
• Underlying theory
• The artificial world
• Results
• Conclusions

2 Background

2.1 Evolutionary Emergence

Emergence is related to novel, unexpected behaviours.
This relationship often leads to definitions of emergence
that are dependent on the predictive ability of an ob-
server and demand a once-only instance of emergence.
According to such definitions, an exact repetition of a
process that yielded an emergent property does not yield
an emergent property, since the observer is no longer sur-
prised.

Steels [21] gives temperature and pressure as exam-
ples of emergent properties that would not be classified
as emergent by such a definition. He uses emergence to
refer to ongoing processes which produce results invok-
ing vocabulary not previously involved in the description
of the system’s inner components (‘new descriptive cat-
egories’ [21]). This is the definition used in this paper.
Evolutionary emergence is simply emergence resulting
from an evolutionary process.



2.1.1 An Example: ‘Farmers and Nomads’

Sannier and Goodman [20] used a genetic algorithm to
evolve genomes within a two-dimensional toroidal artifi-
cial world containing ‘food’. Each individual (genome)
was given the ability to detect the conditions in its inter-
nal and immediate external environments. An individ-
ual’s ‘strength’, which is deducted from its parents’ at
birth, increases on consumption of food and decreases in
each time step (and upon reproduction). To reproduce,
an individual’s strength must be above a threshold. An
individual dies if its strength drops below a lower thresh-
old.

The genomes encode rules which allow them to move
in one of eight directions (N,NE,E,SE,...) with program
branching conditional on the presence of food in the eight
neighbouring locations.

In the experiment reported, food was restricted to two
‘farm’ areas, spaced apart in the toroidal world. The
level of food in a farm varied periodically; when one
farm was having its ‘summer’ the other would be hav-
ing its ‘winter’. A farm’s potential was set lower the
more it was either over-consumed or neglected (under-
consumed) during the previous period.

Two classes of individual emerged from the evolution:
‘farmers’ who stayed put in one of the farms, their popu-
lations rising and falling with the ‘seasons’, and ‘nomads’
who circled the world, moving in such a way that they
passed through both farms during their summers. The
nomad population would increase as it went through a
farm and decrease as it moved through the area without
food. Notice the new descriptive categories ‘farmer’ and
‘nomad’.

Groups of individuals from each category were ex-
tracted from the total population and tested in the ab-
sence of the other category. Whilst farmers could survive
without nomads, it was found that nomads needed farm-
ers so that the farms would not be neglected between
visits.

The (relevant) important feature is the emergence of
the two classes of individual. Never was it specified that
they should arise. Evolution produced them simply be-
cause they perform better than other solutions within the
environment. The only information given, above the ge-
netic algorithm and external environment, was the avail-
able actions (moves) and conditionals (food in neighbour-
hood?). It could be said that the system outperformed
the specifications given it.

2.1.2 SAGA

Most conventional genetic algorithms set out to solve a
well-defined optimisation problem. For such problems
the individuals (solutions) are generally encoded on a
fixed-length genotype, often directly (using a bijection
between the solution set and the chromosome set). But

we wish to go beyond using evolutionary algorithms to
solve specific problems, towards using them for emergent
systems that perform well in general. Genetic algorithms
with fixed-length genotypes cannot be used to evolve in-
creasingly impressive systems as natural evolution has
done, so we need to use variable-length genotypes.

The subject of how genotype lengths should change
has been addressed by Harvey’s ‘Species Adaptation Ge-
netic Algorithm’ (SAGA) theory [9, 10]. He argues
(and demonstrates) that the changes in genotype length
should take place much more slowly than crossover’s
fast mixing of chromosomes. The population should
be nearly-converged, evolving as species; mutation rates
should be low enough that they do not disperse the
species (in genotype space) or hinder the assimilation, by
crossover, of beneficial mutations into the species. The
idea of species is not engineered in, but rather a result
of this theory. A new species arises (emerges) when a
progenitorial species splits into separate ones. A species
becomes extinct once all its members have died.

In slightly more detail, taking into account gene dupli-
cation and genotype to phenotype (ontogenesis) systems,
Harvey is arguing that the complexity of the information
contained within the genomes of a species should change
slowly, relative to the assimilation of advantageous mu-
tations.

2.2 Development and Modularity in
Artificial Neural Networks

The brain is modular at several levels. The cerebral
cortex, for example, contains macro-modules of hundreds
of minicolumns, each module containing approximately
one hundred neurons. There are many known examples
of neural structures that serve a purpose different from
their original use, for example [22]. When one consid-
ers animals as a whole, it is clear that most properties
evolved from ancestral properties which had slightly dif-
ferent functions [16]. For example, if we could trace far
enough back up our evolutionary tree, we would not ex-
pect ears to have suddenly appeared on an individual
in a situation where ears would be useful. Similarly, we
can expect most neural structures to be descended from
neural structures which once had a different function.

Evidence from gene theory tells us that genes are used
like a recipe, not a blueprint. In any one cell, at any one
stage of development, only a tiny proportion of the genes
will be in use. Further, the effect that a gene has depends
upon the cell’s local environment – its neighbours.

The above two paragraphs are related: For a type of
module to be used for a novel function (and then to con-
tinue to evolve from there), without loss of current func-
tion, either an extra module must be created or there
must be one ‘spare’ (to alter). Either way, a duplica-
tion system is required. This could be either by gene
duplication or as part of a developmental process. Gene
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duplication can be rejected as a sole source of neural
module duplication, because our genes do not have the
capacity to store all specific connections without a mod-
ular coding [1]. Therefore we arrive at the conclusion
that a developmental process is required for the effective
evolution of complex neural structures.

There are currently three main approaches to the mod-
ular development of artificial neural networks (ANNs):
cellular encoding, cellular automata and Lindenmayer
systems.

Before moving on to consider these three approaches,
the type of neural network required should be consid-
ered. Most artificial neural networks that have been
manually designed are layered feed-forward networks.
However, recurrent networks can have internal state sus-
tained over time and demonstrate rich intrinsic dynam-
ics. This makes them attractive for use in adaptive be-
haviour work. Evidence from neuroscience provides fur-
ther support, as biological neural networks are recurrent.
Whilst recurrent ANNs can be very hard to study and
construct manually, artificial evolution should have no
problem using them. Indeed, there seems to be little rea-
son to constrain the evolution to feed-forward networks,
especially when aiming for autonomous agents that are
to act as complex dynamical systems working within a
time frame.

2.2.1 Gruau’s Cellular Encoding

Gruau [8] uses genetic programming (GP) [14] to evolve
his ‘cellular programming language’ code to develop
modular artificial neural networks. The programs used
are trees of graph-rewrite rules whose main points are
cell division and iteration. Like many practitioners of
GP, he considers evolutionary algorithms as a tool in the
design process.

The crucial feature required for this work, which is
missing from Gruau’s approach, is exactly what is miss-
ing from genetic programming. Modularity can only
come from either gene duplication (see objections above)
or iteration. But iteration is not a powerful enough mod-
ular developmental backbone. Consider, for example,
the cerebral cortex’s macro-modules of hundreds of mini-
columns. These are complicated structures that cannot
be generated with a ‘repeat one hundred times: minicol-
umn’ rule. There is variation between macro-modules.

So in genetic programming, we are reduced to gene
duplication for all but simple iterative structures. What
is required is a rule of the sort ‘follow (rules X)’ where
(rules X) is a marker for (pointer to) rules encoded else-
where on the genotype. But this would be difficult to
incorporate into GP. A better route is to use a system
capable of such rules. Both cellular automata and Lin-
denmayer systems are.

2.2.2 Cellular Automata

The use of conventional cellular automata (CA) for
the construction of artificial neural networks has been
recorded in many CA books. However, such work is
more at the level of neuron growth than the development
of whole networks. Although CA rules are suited to the
evolution of neural network development in principle, the
amount of work still to be done makes this a major re-
search hurdle. Also, CA appear to offer no advantage for
this work over the system chosen: Lindenmayer systems
(next section), which are related to cellular automata.

CAM-Brain [7] is a project to “implement a cellular
automata based artificial brain with a billion neurons by
2001, which grows/ evolves at (nano-) electronic speeds”
(from the abstract). Whilst resulting technology may be
of use in this field, there are two main problems with the
CAM-Brain project. The first is that insufficient consid-
eration has been given to the requirements of evolving
intelligent behaviour. A single brain with no suitable
means of interacting with other intelligences will be of
little use for the evolution of intelligence. This could be
overcome by using hundreds of these devices (possibly
smaller and inside one machine). The second, more seri-
ous problem is that the CA rules are fixed. The method
involves feeding a sequence of ‘signal cells’ along ‘trails’
(contained by ‘sheath cells’). The sequence of signal cells
is determined by the genotype. This amounts to a pro-
gram and, without serious thought concerning how to
incorporate a ‘follow (rules X)’ rule, warrants the same
criticism as Gruau’s cellular encoding.

2.2.3 Lindenmayer Systems

As discussed above, gene-theory has shown us that in
nature genes are used as a recipe for each cell to follow.
The development of each cell is determined by the rele-
vant genes, which are determined by the cell’s immediate
environment. All cells use the same set of rules, derived
from the genes.

Lindenmayer Systems [15] (L-systems) were developed
to model the biological growth of plants. They are a class
of fractals which apply rules (‘production rules’) in par-
allel to the cells of their subject. Thus a specified ‘axiom’
subject (typically one or two cells) develops by repeated
re-application of these rules. Each step in a cell’s devel-
opment can be determined by the cell’s immediate envi-
ronment, including itself. In general, the most specific
production rule that matches a cell’s situation is applied.

For the purpose of this work, L-systems offer all the
advantages of CA (and more) with none of the disad-
vantages. Also, work on the evolution of L-systems as
modular development strategies for ANNs has already
been undertaken with some success.

Kitano [13] used a context-free L-system to evolve con-
nectivity matrices. The number of rules in the genotype
was variable. After each developmental step, the ma-
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trix would have doubled in both width and height. Ki-
tano demonstrated better results than direct encoding
when evolving simple ANNs (such as XOR and simple
encoders) using training by backpropagation (gradient
descent on the output error-vector’s length). He also
showed that the number of rules could be small. One
criticism of Kitano’s work must be that the resulting
network architectures are fully-connected clusters of un-
connected nodes; backpropagation is still doing most of
the work.

Boers and Kuiper [1, 2] used a context-sensitive L-
system to evolve modular feed-forward network archi-
tectures that were evaluated after training by backprop-
agation. A fixed-length alphabet was used for the rules,
restricting the possible network architectures but still
producing some good results.

The genetic decoding involved starting from each of
the first five bits of the genotype and reading the string
six bits (one character) at a time. Therefore each min-
imal substring that could be decoded into a production
rule was read. Invalid production rules were thrown out.
Then the decoding is repeated, using the genotype in
reverse.

The evolution of production rules used a conventional
genetic algorithm, with fixed-length genomes initially
randomised. A limit of 6 rewrite passes over the network
string was imposed (and reached by most genomes).

One criticism of Boers’ and Kuiper’s work must be the
same as for Kitano’s: that the resulting network architec-
tures are fully-connected clusters of unconnected nodes;
backpropagation is still doing most of the work. It is pos-
sible, from their results, that the genetic algorithm is do-
ing little more than constructing layers of nodes with the
provision for links that skip intermediate layers. How-
ever, good results were achieved on problems such as the
TC-problem [18], and their work was the source of the
main ideas behind the developmental system outlined in
this paper.

3 Underlying Theory

3.1 Intelligent Artificial Life calls for
Evolutionary Emergence

The (long-term) aim of creating systems with intelligence
comparable to that in nature presents us with the prob-
lem that we do not understand such intelligence well
enough to program it into a machine. Therefore we
must either increase our understanding of it until we can,
or create a system which outperforms the specifications
we can give it. The first possibility includes traditional
AI’s top-down methodology, which has so far made lit-
tle progress towards such intelligence. Ryle [19] long ago
pointed out the futility of attempts to define intelligence,
since they must invoke the ‘ghost in the machine’ fallacy:
we can never observe intelligence directly; we can only

define that some actions are more intelligent than others.
The first option also includes manual incremental

(bottom-up) construction of autonomous systems with
the aim of increasing our understanding and ability to
model intelligence. The aim here is to build increasingly
impressive systems, retaining functional validity by test-
ing them within their destination environment. However,
bearing in mind the fundamentally distributed nature
of intelligence, it is unlikely that human designers will
be capable of manually producing intelligence beyond a
rudimentary level.

The second option is to create systems which outper-
form the specifications given them and which are open
to producing behaviours comparable with those of (al-
beit simple) natural life. Specifically, the objectives are
behaviours comparable with those of the only known in-
telligences: organisms with nervous systems as produced
by evolution in nature. Thus the creation of evolutionary
systems open to the emergence of intelligent behaviours
surfaces as a promising route. It is my opinion that such
emergent behaviours (however basic) could warrant the
label ‘real intelligence’.

When discussing this issue, the general-purpose nature
of intelligence must not be forgotten. To argue that cre-
ating general-purpose intelligence is too vague or difficult
a problem and that research should deal first with spe-
cific, static behaviours is analogous to advising Charles
Babbage to think first about designing a machine to sort
coins (say), before tackling the more demanding issues
involved for a general-purpose computing machine. Such
arguments completely miss the point. The way forward
is to tackle the issue in its entirety.

3.2 Evolutionary Emergence calls for
Natural Selection

Evolution in nature has no (explicit) evaluation func-
tion. Through organism-environment interactions, in-
cluding interactions between (similarly-capable) organ-
isms, certain behaviours fare better than others. This is
why the non-random cumulative selection works without
any long-term goal. It is why new abilities emerge. In
order to achieve high levels of emergence, we must stop
treating evolution as a search for the optimum organism
as evaluated by some guess at what that involves. The
use of evaluation functions results (at best) in solutions
which score well but provides little freedom for emergent
properties to progress.

As artificial evolution is applied to increasingly dif-
ficult problems, the difficulty in specifying satisfactory
evaluation functions is becoming apparent (for example
[24]). At the same time, the power of natural selection is
being demonstrated in prototypal systems such as Tierra
[17] and PolyWorld [23]. However, the total freedom of
natural selection is still to be realised in an artificial life
system. For example, Tierra’s ‘Darwinian operating sys-
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tem’ is used to kill old and defective programs, and Poly-
World uses a concept of energy which results in a fairly
clear artificial evaluation function, albeit implicit.

3.3 Evolutionary Emergence of Intelligence
calls for Developmental Modularity

The evolutionary emergence of intelligence requires
new neural structures. We can expect most neural struc-
tures to be descended from neural structures which once
had a different function [16]. For a neural structure to
be used in a novel way (possibly after further evolution)
and yet still perform its current roles, a duplication sys-
tem is required. This could be either gene duplication or
part of a modular developmental process.

Gene duplication can be rejected as a sole source of
neural structure duplication, because the capacity re-
quired to store all specific connections in a large network
without a modular coding is infeasible. Therefore, we
conclude that for the effective evolutionary emergence of
intelligence, a modular developmental process is called
for. For the sake of research validity (regarding long-
term goals), this should be included from the outset.

A modular development strategy should be able to use
a module in a large number of specific situations (rather
than just iteratively). It makes intrinsic sense that the
development of a module should depend partly on its
local environment, including itself, and not on remote
parts of the environment. Lindenmayer systems [15] can
possess both of these fundamental properties. Indeed,
using the most general definition of an L-system, all sys-
tems with these properties are examples of L-systems.

4 The Artificial World

In order to develop and validate the underlying the-
ory, a simple Artificial Life system has been created.
‘Geb’ (Egyptian god of the earth and father of Isis; also
stands for Genetics and Emergent Behaviours) is a two-
dimensional toroidal world containing artificial organ-
isms each controlled by a neural network. The networks
are produced from bit-string genotypes by a developmen-
tal process. Evolution within Geb is strictly by Natural
Selection.

Geb’s world is divided into a grid of squares; 20x20 of
them in most runs. No two individuals may occupy the
same square at any one time. This effectively gives the
organisms a size within the world and puts a limit on
their number (400 in most runs). Individuals are other-
wise free to move around the world, restricted only by
this simple rule. As well as a position within the world,
each organism has a forward (facing) direction, set ran-
domly at birth. Organisms are displayed as filled arcs,
the sharp points of which indicate their forward direc-
tion.

This is Geb’s main algorithm:

Figure 1: Geb World

Initialisation
Every square in the world has an individual with a

single-bit genotype ‘0’ born into it.
Main Loop

In each time step (loop), every individual alive at the
start of the cycle is processed once. The order in which
the individuals are processed is otherwise random.

These are the steps involved for each individual:

1. Network inputs are updated. See section 4.2.

2. Development – an iteration of the ontogenesis mech-
anism. See section 4.3.

3. All neural activations, including network outputs, are
updated. See section 4.1.

4. Actions associated with certain network outputs are
carried out according to those outputs. These ac-
tions are reproduce, fight, turn anti-clockwise, turn
clockwise, and move forward. See section 4.2.

4.1 The Neurons

The artificial neural networks used in Geb are recurrent
networks of nodes as used successfully by Cliff, Harvey
and Husbands in their evolutionary robotics work [6, 11,
12]. Cliff et al. evolved recurrent networks of these nodes
for visual navigation tasks in simple environments.

The level of noise used here (0.6) is significantly higher
than that used by Cliff et al. (0.1). This is because noise
is the only source of activation in Geb and, with the
developmental method outlined below, it is easy for evo-
lution to produce ‘generator units’ [12] (sources of high
output). A corresponding (high) decision threshold for
organisms’ binary (yes/no) actions, such as reproduc-
tion, is used. Thus full control is available (via inhibition
and generator units), early random binary actions are at
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Figure 2: Schematic block diagram of a neuron, from [6]

a sensible level and early random multi-valued actions
(such as moving forwards by a distance) can be at a rea-
sonably high level without having to be scaled such that
the maximum possible is ridiculously high. The neurons’
veto-threshold is set to the decision threshold for organ-
isms’ binary actions. These details will become clearer
as the rest of the system is described.

All links have unit weight; no lifetime learning is used.
This is to avoid the criticism that lifetime learning is the
main factor.

Each node has a bit-string ‘character’ (label) attached
to it. This is used to match organisms’ network inputs,
outputs and actions, and to determine the node’s de-
velopment during the individual’s lifetime. These char-
acters may be of any non-zero length. A node may be
a network input, a network output, or neither. This is
determined by the developmental process.

4.2 Organism ←→ Environment Interactions

There are five built-in actions available to each organ-
ism. Each is associated with network output nodes whose
characters start with a particular bit-string:

1. 01* Try to reproduce with organism in front

2. 100* Fight: Kill organism in front

3. 101* Turn anti-clockwise

4. 110* Turn clockwise

5. 111* Move forward (if nothing in the way)

For example, if a network output node has the char-
acter 1101001, then the organism will turn clockwise by
an angle proportional to the excitatory output of that
node. If an action has more than one matching network
output node then the relevant network output is the sum
of these nodes’ excitatory outputs. If an action has no
network output node with a matching character, then
the relevant network output is noise, at the same level
as in the (other) nodes.

Both ‘reproduce’ and ‘fight’ are binary actions. They
are applied if the relevant network output exceeds a cer-
tain threshold and have no effect if the square in front
is empty. Turning and moving forward are done in pro-
portion to excitatory output.

When an organism reproduces with another in front
of it, the child is placed in the square beyond the other
individual if that square is empty. If the square is not,
the child replaces the individual being mated with. An
organism can not reproduce with an individual that is
fighting if this would involve replacing the fighting indi-
vidual.

Reproduction involves crossover and mutation. Geb’s
crossover always offsets the cut point in the second indi-
vidual by one gene (bit position), with equal probability
either way. This is why the genotype lengths vary. Also,
crossover is strict. That is it always uses genes from both
parents; the cut point cannot be at the very end of ei-
ther genotype. This provides significant initial pressure
for length increase until genotypes are long enough to
produce developmental rules. Mutation at reproduction
is a single gene- (bit-) flip on the child genotype.

An organism’s network input nodes have their excita-
tory inputs set to the weighted sum of ‘matching’ net-
work output nodes’ excitatory outputs from other indi-
viduals in the neighbourhood. If the first bit of a net-
work input node’s character is 1 then the node takes its
input from individuals to the right hand side (including
forward- and back-right), otherwise from individuals to
the left. A network input node ‘matches’ a network out-
put node if the rest of the input node’s character is the
same as the start of the character of the output node.
For example, a network input node with character 10011
matches (only) network output nodes with character’s
starting with 0011 in the networks of individuals to the
right. The weights are inversely proportional to the Eu-
clidean distances between individuals. Currently the in-
put neighbourhood is a 5x5 square area centred on the
relevant organism.

Notice that the network output nodes with characters
0, 1, 10, 11 and all those starting with 00 do not produce
any action. However, their excitatory values can still be
input by other individuals. Thus there is the potential
for data exchange not directly related to the actions.

4.3 The Lindenmayer Systems Used

A context-free L-system was designed for the evolution of
networks of the neurons outlined above. Specific atten-
tion was paid to producing a system in which children’s
networks resemble aspects of their parents’.

Every node is processed once during each develop-
mental step. The production rule that best matches
the node’s character is applied (if there is one). A rule
matches a node if its predecessor is the start of the node’s
character. The longer the matching predecessor, the bet-
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ter the match. Thus ever more specific rules can evolve
from those that have already been successful.

The production rules have the following form:

P → Sr,Sn ; b1, b2, b3, b4, b5, b6 ,where:

P Predecessor (initial bits of node’s character)
Sr Successor 1: replacement node’s character
Sn Successor 2: new node’s character
bits: link details [0=no,1=yes]:
(b1, b2) reverse types [inhibitory/excitatory] of

(input, output) links on Sn
(b3, b4) (inhibitory, excitatory) link from Sr to Sn
(b5, b6) (inhibitory, excitatory) link from Sn to Sr

If a successor has no character (0 length) then that
node is not created. Thus the predecessor node may be
replaced by 0, 1 or 2 nodes.

The ‘replacement’ successor (if it has a character) is
just the old (predecessor) node, with the same links but
a different character. The ‘new’ successor (if it has a
character) is a new node. It inherits a copy of the old
node’s output links unless it has a link to the old node
(b5 or b6). It inherits a copy of the old node’s input links
unless it has a link from the old node (b3 or b4).

New network input nodes are (only) produced from
network input nodes and new network output nodes
are (only) produced from network output nodes. The
character-based method of matching up network inputs
and outputs ensures that the addition or removal of a
network input/ output node at a later stage of develop-
ment or evolution will not damage the relationships of
previously adapted network inputs and outputs.

The axiom network consists of three nodes with two
excitatory links:

network input 001 7−→ 000 7−→ 01 network output

These node characters were not chosen randomly.
First, the network output node’s character (01) matches
reproduction. Next, the network input node’s character
(left input 01) matches this, without matching any of the
other action characters. And finally the hidden node’s
character neither matches nor is matched by the other
nodes’ or the action characters.

Development takes place throughout the individual’s
life, although necessary limits on the number of nodes
and links are imposed.

4.3.1 Context-Sensitive Lindenmayer Systems

To fully realise a developmental system satisfying the
underlying theory (section 3.3), a context-sensitive
L-system is called for. At the time of (re-)submission,
experiments with such systems are underway and have
produced the same initial results as those detailed in this
paper but have not yet run for long enough to produce
the later or different results.

4.4 Genetic Decoding of the Production Rules

The genetic decoding is loosely similar to that used by
Boers and Kuiper [1, 2]. For every bit of the genotype,
an attempt is made to read a rule that starts on that bit.
A valid rule is one that starts with 11 and has enough
bits after it to complete a rule; the number of bits varies
because the node-characters can be of any length.

To read a rule, the system uses the idea of ‘segments’.
A segment is a bit string with its odd-numbered bits (1st,
3rd, 5th, ...) all 0. Thus the reading of a segment is as
follows: read the current bit; if it is a 1 then stop; else
read the next bit – this is the next information bit of the
segment; now start over, keeping track of the information
bits of the segment. Note that a segment can be empty
(have 0 information bits).

The full procedure to (try to) read a rule begins with
reading a segment for each of the predecessor, the first
successor (replacement node) and the second successor
(new node). Then, if possible, the six link-details bits
are read. Only if this is achieved before the end of the
genotype is a rule created.

For example:

Genotype: 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0

Decoding: +++ ->_1_ * _0_ * 0 1 1 1 0 0

+++ _1_ ->_0_ * _1_ * 1 0 0 0 0 0

Rules: 1. P -> Sr , Sn , link bits

any -> 1 , 0 , 0 1 1 1 0 0

2. P -> Sr , Sn , link bits

1 -> 0 , 1 , 1 0 0 0 0 0

After reading all possible rules from a newly-born’s
genotype, Geb filters the rules: It starts with rules whose
predecessors best match a node in the axiom network,
and then repeatedly adds in the best matching new rules
if possible and as required to match predecessors to the
successors of rules already picked. Rules that have not
been picked when this process stops (because no new
rules can be added under the criteria) have predecessors
that could never match a node during development, at
least not as well as another rule. In this way the redun-
dant rules, which constitute the vast majority of decoded
rules from long genotypes, are filtered out, much reduc-
ing the level of machine memory required by Geb.

During this process, a second criterion must be met for
a rule to be added: the gene-segment the rule was de-
coded from must not overlap with a gene-segment of any
rule already picked. This prevents the otherwise common
situation of a rule P→R,N ;bits producing successors R
and N which can then be subject to rules R→N ,B;C and
N→B,C;D (and so on) as would be the case whenever
P ends in 1 or R ends in 1.
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5 Results

5.1 Kin Similarity and Convergence

When two Geb organisms (with networks developed from
more than just a couple of production rules each) repro-
duce, the child’s network almost always resembles a com-
bination of the two parents’ networks. This has been seen
many times; Figures 3 to 5 are a typical example. These
figures are shown in the form that Geb displays them
on request, with all nodes crowded into three rows (net-
work inputs, hidden nodes and network outputs). The
‘pulling apart’ and detailed examination of networks is
left to be carried out by the user through the dragging
and dropping of nodes.

Figure 3: Parent 1

Figure 4: Parent 2

Figure 5: Child

Examination of a larger number of networks from
Geb’s population, at any time, shows similarities be-
tween many of the networks. The population remains
nearly-converged, in small numbers of species, through-
out the evolution.

5.2 Emergence of Increasing Complexity

Once Geb has started, there is a short period while geno-
type lengths increase until capable of containing a pro-
duction rule. For the next ten to twenty thousand time
steps (in typical runs), networks resulting in very sim-
ple strategies such as ‘do everything’ and ‘always go for-
wards and kill’ dominate the population. Some networks
do better than others but not sufficiently well for them
to display a dominating effect on the display of Geb’s
world window.

Figure 6: A Dominant Organism

In every run to date, the first dominant species that
emerges has been one whose individuals turn in one di-
rection while trying to fight and reproduce at the same
time. Figure 6 shows an example of such an individual.
Note the network outputs o101, o01 [x2] and o100 (turn
anti-clockwise, reproduce and fight). Note also the large
number of links necessary to pass from network inputs to
outputs, and the network input characters which match
non-action output characters of the same network (o000
[x2], o00). Individuals of this species use nearby mem-
bers of the same species, who are also turning in circles,
as sources of activation (so keeping each other going).

Although a very simple strategy, watching it in ac-
tion makes its success understandable. Imagine running
around in a small circle stabbing the air in front of you.
Anyone trying to attack would either have to get their
timing exactly right or approach in a faster spiral – both
relatively advanced strategies. These individuals also
mate just before killing. The offspring (normally) ap-
pear beyond the individual being killed, away from the
killer’s path.

Because of the success of this first dominant species,
the world always has enough space for other organisms
to exist. Such organisms tend not to last long; just about
any movement will bring them into contact with one of
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Figure 7: A rebel

the dominant organisms, helping that species in its repro-
duction as much as themselves. Hence these organisms
share some of the network morphology of the dominant
species. However, they can make some progress: Individ-
uals have emerged that are successful at turning to face
the dominant species and holding their direction while
trying to kill and reproduce. An example of such a rebel
(from the same run as figure 6) is shown in figure 7. Note
that most rebels have many more nodes and links. This
one was picked for its clarity.

Further, running averages of the number of organisms
reproducing and killing (figures 8&9) show that a second
dominant species tends to emerge, possibly evolved from
the rebels. Such organisms have not yet been analysed.
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Figure 8: Typical run 1 (running averages)
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Figure 9: Typical run 2 (running averages)

5.3 An Unexpected Result

Whilst it was expected that inhibitory links would play
an important role, the evolution in Geb has so far re-
sulted in individuals with very few. This is despite the
apparently high potential for inhibitory links in the de-
velopmental system.

6 Conclusions

The main conclusion is that the proposed approach is
viable. Although the behaviours that emerged are very
low-level, they are encouraging nonetheless, for they are
similar in type to those found in nature and the increases
in complexity were in ways not specified by the design.

In work involving pure natural selection, the organ-
isms’ developmental and interaction systems are analo-
gous to the fitness functions of conventional genetic al-
gorithms. Whilst the general aim involves moving away
from such comparisons, the analogy is useful for recognis-
ing how the epistasis of fitness-landscape issue transfers
across: Certain ontogenetic and interaction systems can
result in individuals with similar genotypes but very dif-
ferent phenotypes. The results show that Geb does not
suffer from this problem, probably because of the care
taken in its design.

This work has made it clear that the specification of
‘actions’, even at a low-level, results in the organisms
being constrained around these actions and so limits the
evolution; natural selection alone does not guarantee an
open-ended system. Viable alternatives in which the em-
bodiment of organisms is connected to their actions need
to be investigated.
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