
1

Towards the evolutionary emergence of increasingly
complex advantageous behaviours1

A.D. Channon and R.I. Damper

Abstract

The generation of complex entities with advantageous behaviours beyond our manual design ca-
pability requires long-term incremental evolution with continuing emergence. In this paper, we
argue that artificial selection models, such as traditional genetic algorithms, are fundamentally in-
adequate for this goal. Existing natural selection systems are evaluated, revealing both significant
achievements and pitfalls. Thus, some requirements for the perpetuation of evolutionary emer-
gence are established. An (artificial) environment containing simple virtual autonomous organisms
with neural controllers has been created to satisfy these requirements and to aid in the development
of an accompanying theory of evolutionary emergence. Resulting behaviours are reported along-
side their neural correlates. In a particular example, the collective behaviour of one species provides
a selective force which is overcome by another species, demonstrating the incremental evolution-
ary emergence of advantageous behaviours via naturally-arising coevolution. While the results fall
short of the ultimate goal, experience with the system has provided some useful lessons for the
perpetuation of emergence towards increasingly complex advantageous behaviours.

Keywords: advantageous behaviour, complexity, emergence, evolution, natural selection

1This article appears in the Special Issue ‘Emergent Properties of Complex Systems’, 2000, International Journal of Systems
Science 31(7), 843–860.

2

1 Introduction

This work aims towards the generation of systems within which increasingly complex advantageous
behaviours can emerge. The adjective advantageous is used rather than adapted because the concern
is the emergence of increasingly complex behaviours which mould a dynamical system of artificial
entities, rather than just fit into an environment. This presents a dilemma: we do not understand
such behaviours well enough to program them into a machine. So we must either increase our
understanding until we can, or create a system which outperforms the specifications we give it.

The first possibility includes the traditional top-down methodology, which appears as inappro-
priate here as it has so far proved to be for (symbolic) artificial intelligence. It also includes most
manual incremental (bottom-up) construction of autonomous systems with the aim of increasing our
understanding and ability to model complex behaviours. The goal here is to build increasingly im-
pressive systems, retaining functional validity by testing them within their destination environments
(e.g. Wilson 1991). However, by the very nature of complexity, it is unlikely that human designers
will be capable of manually producing complex advantageous behaviours beyond a rudimentary level.

The second option is to create systems which somehow outperform the specifications given them
and which are open to producing increasingly complex advantageous behaviours. Evolution in na-
ture has no (explicit) evaluation function. Through organism-environment interactions, including
interactions between similarly-capable organisms, certain behaviours persist while others die off.
This is how the non-random cumulative selection operates without any long-term goal; it is why
novel structures and behaviours emerge. Whereas work on adapted behaviour focuses on fitness in
the present, research on advantageous behaviour shifts the focus to the future, where what it is to be
fit may have changed because of the moulding of the environment. However, this does not prevent
us from evolving advantageous behaviours and discovering which ones are fit with respect to the re-
sulting evolving environment – that is, which ones persist. Further, one can expect many behaviours
that evolve and persist to have done so because they are (or at least have been) advantageous, in that
the behaviours contribute to the persistence of their host system (organism, species or such).

This paper presents a detailed argument for the use of natural selection systems as a means of
generating evolutionary emergence, before describing experimental results which further develop a
methodology for constructing such systems. Accordingly, the remainder of the paper is structured
as follows. Section 2 specifies what evolutionary emergence is, and how it differs from other types
of emergence. Section 3 summarises incremental artificial evolution theory, necessary for long-term
evolutionary emergence. Section 4 makes the case that artificial selection cannot generate evolu-
tionary emergence (by our definitions), which must therefore be the product of natural selection.
Section 5 evaluates existing natural selection systems. This section is more than a tutorial: it offers
important and novel insights into these systems, revealing not only their significant achievements
but also crucial pitfalls. Thus, it provides the first major contribution of this paper. Section 6 ad-
dresses the issue of what to evolve, the focus being on principles of neutrality and neural develop-
mental modularity that enable the incremental evolution of complex behaviours. The experimental
system, which satisfies the requirements identified thus far, but which also reveals further crucial
pitfalls, is described in section 7. The purposes of this system are to verify and extend the theory
of evolutionary emergent system generation. Section 8 presents the results and section 9 concludes,
summing up what has been learned from the system – the second major contribution of this paper.

2 Evolutionary emergence

According to Stephan (1998, p. 639): “In different disciplines such as philosophy of mind, dynamical
systems theory, and connectionism the term ‘emergence’ has different jobs to perform.” For the pur-
poses of this paper, we take emergence to be related to qualitatively novel structures and behaviours
which are not reducible to those hierarchically below them. Thus, it offers an attractive methodology
for tackling Descartes’ Dictum: “how can a designer build a device which outperforms the designer’s
specifications?” (Cariani 1991, p. 776). Most important, it is necessary for the generation of complex
entities with behaviours beyond our manual design capability.

Cariani identified the three current tracts of thought on emergence, calling them “computational”,

3

“thermodynamic” and “relative to a model”. Computational emergence is related to the manifesta-
tion of new global forms, such as flocking behaviour and chaos, from local interactions. Thermo-
dynamic emergence is concerned with issues such as the origins of life, where order emerges from
noise. The emergence relative-to-a-model concept deals with situations where observers need to
change their model to keep up with a system’s behaviour. This is close to Steels’ (1994) concept
of emergence, which refers to ongoing processes which produce results invoking vocabulary not
previously involved in the description of the system’s inner components – “new descriptive cate-
gories” (section 4.1).

Evolutionary emergence falls into the emergence relative-to-a-model category. An example will
clarify the divisions. Consider a virtual world containing organisms that can move and try to re-
produce or kill according to rules which are sensitive to the presence of other organisms and which
evolve under natural selection. Should flocking manifest itself in this system, we could classify it as
emergent in two senses: first in the computational sense from the interaction of local rules, flocking
being a collective behaviour, and second in the relative-to-a-model sense through the evolution, the
behaviour being novel to the system. Although the first sense is also relevant to our goal, in that
complex advantageous systems will involve such emergence, the second is the key to understanding
evolutionary emergence.

Langton (1989) gave a simple, compatible method of ascribing emergence: “The essential fea-
tures of computer-based Artificial Life models are: . . . There are no rules in the system that dictate
global behavior. Any behavior at levels higher than the individual programs is therefore emergent”
(pp. 3–4). Note that this can be used for both the computational and relative-to-a-model senses of
emergence. He also stressed (p. 41) the importance of nonlinear systems – those which do not obey
the superposition principle (i.e. which cannot be understood in terms of independent constituent
parts) where it is necessary to understand the interactions between the parts. Thus, new descriptive
categories cannot be invoked from a system which obeys the superposition principle.

Having specified what is meant by evolutionary emergence, we will now summarise incremen-
tal artificial evolution theory and then explore the two types of selection which might be used to
bring about such emergence. Packard (1989) referred to these as “extrinsic adaptation, where evo-
lution is governed by a specified fitness function, and intrinsic adaptation, where evolution occurs
‘automatically’ as a result of the dynamics of a system caused by the evolution of many interacting
subsystems” (p. 141). We will use the terms artificial and natural selection respectively, because the
first involves the imposition of an artifice crafted for some cause external to a system beneath it,
while the second relies solely on the innate dynamics of a system. Ray (1996, section 2.1) is one of the
better known personalities trying to bring an awareness of the difference between artificial and nat-
ural selection to the many practitioners in the artificial evolution field who claim to be using natural
selection when they are in fact using artificial selection.

3 Incremental artificial evolution

Genetic algorithms (GAs) are biologically inspired search procedures initially developed by Holland
(1962, 1975, 1992) in the early 1960s – although see also Fraser (1957), Fogel (1962) and Fogel, Owens,
and Walsh (1966) for other evolutionary algorithms’ roots. GAs evolve an initial random popula-
tion of genomes (codings for solutions to the problem in hand) by selecting which individuals are
reproduced and which are replaced. This is done by evaluating each solution’s fitness via some func-
tion relevant to the problem and favouring the fitter solutions. Reproduction typically involves both
crossover, whereby parent genomes are split into sections at common (randomly chosen) cut points
and the new genome inherits corresponding sections from one parent or the other, and mutation,
which involves randomly altering a small proportion of the new genome. Mutation increases diver-
sity and crossover combines beneficial discoveries. There are many variations on the typical GA, but
most share this base description.

Although most GAs work on populations of solutions with a fixed size and structure, the evo-
lution of increasingly complex entities requires us to evolve variable-sized genotypes over many
generations. Harvey’s (1993b) Species Adaptation Genetic Algorithm (SAGA) theory provides a
framework for incremental artificial evolution. In this paradigm, a population (with possibly just a

4

few tens of members) evolves as nearly-converged species, for thousands or millions of generations.
The increases in complexity must therefore result from the evolution itself. This is in contrast to

the common use of the genetic programming (GP) paradigm (Koza 1990, 1992), for example, where
a population of millions may be evolved for less than a hundred generations (Harvey 1997, sec-
tion 5). In the GP case, recombination effectively mixes the random initial population, exhausting
variation in few generations. Because genetic codings of computer program instructions result in
rugged (uncorrelated) fitness landscapes (i.e. mutating a bit in the genotype of a fit program will al-
most certainly produce a very unfit program), there can be little further evolution of this converged
population. Here we see one of the requirements of SAGA: a sufficiently correlated fitness land-
scape (actual or implicit). Mutation must be possible, at a low rate, without dispersing the species in
genotype space or hindering the assimilation by crossover of beneficial mutations into the species.

The open-ended evolution of increasing complexity cannot, of course, be achieved with fixed-
length genotypes. Harvey (1992) states the case for gradual changes in genotype length (sections 2–
6). First, he reports some theory due to Kauffman and Levin (1987). In an adaptive walk on a
completely uncorrelated landscape, with “fitness achieved” defined as the highest encountered, each
step up the fitness rank will (be expected to) take twice as long as the previous step, there being only
half the (expected) number of fitter neighbours. This result still holds if in each time step a large
population (of fixed number) samples different mutants, with the population moving as a whole
to the fittest. Harvey (1992) makes the point that the result holds on correlated landscapes for a
“long jump . . . defined to be the equivalent of several simultaneous mutations, long enough to jump
beyond the correlation lengths in the landscape” (section 5). Thus, the argument proceeds, such long
jumps will play less and less of a beneficial role as evolution progresses. After an initial period of
fluctuation, only small jumps (such as individual mutations) will be beneficial. Harvey notes that
this is not connected to the punctuated equilibria controversy; only a single large step is ruled out,
not a cascade of small steps that could be rapid in geological time.

Harvey (1993a, section 6.7) provides an accurate tail of this argument. A change in genotype
length which causes the information content of the genotype expressed in the phenotype (GIP) to
change can also be considered as a mutation in the above argument. Therefore, such changes would
only be beneficial if made in small jumps. Because detrimental mutation must not be so high as to
disperse members away from existing fit genotypes, the argument is now complete for a low rate of
change in the information content of the GIP, both by direct genetic mutation and indirectly through
changes in genotype length.

If this rule – of a low rate of direct genetic mutation and a low rate of change in genotype length
with respect to effect on information content of GIP – is followed, then the population will evolve as
nearly-converged species, convergence being in terms of GIP information content. If, in addition, a
direct genetic coding (i.e. a bijection between genotype and phenotype) is used, then the population’s
members will have an almost uniform genotype length that increases in small steps. Even if this is
not the case, the information content of the GIP will increase (at most) gradually.

As made explicit by Harvey (1992, figure 3), the convergence of the population need not be
around a single species. Variation in number of species is not engineered in, but rather is a result
of this theory. A new species arises (emerges) when a progenitorial species splits into separate ones.
A species becomes extinct once all its members have died. Note also that the “problem of premature
convergence” from traditional GA theory is now irrelevant.

One further issue worth clarifying is that of functional validity with respect to the destination
environment, or “situation within a world”. Brooks (1991a, 1991b) argues that incremental develop-
ment (including evolution) must take place within the environment that the objects inhabit. This is to
avoid problems (common in traditional artificial intelligence) caused by a divide between a system
and the real world. So, for example, some researchers (e.g. Harnad 1993) argue that robots intended
to inhabit the real world must be evolved (or at least frequently evaluated) in it. However, if organ-
isms are only ever to inhabit an ‘artificial’ environment then there should be no concern about them
being evolved in that environment. Their ‘world’ is not a simulation and so the approach suffers
none of the problems that occur when trying to use a simulation to evolve robots for the real world.
Where the artificial environment differs from our world (however greatly), there is no problematic
error. There is simply a difference.

5

4 Artificial selection

Holland did not originally envisage GAs as functional optimisers, but rather as processes similar to
natural adaptive systems. In the natural world, organisms interact in complex ways and so coevolve
with their environment, which includes other organisms. However, GAs proved suitable for a range
of optimisation tasks and this has grown to be their most widespread application (Goldberg 1989).

4.1 The state of artificial selection work

Within the artificial evolution field, variants of the optimisation paradigm have proven fruitful. Even
where the concepts of SAGA theory (section 3) are dominant, practice still holds to the use of fitness
functions. But as the complexity of behaviours under consideration increases, flaws in the artifi-
cial selection approach are appearing. Zaera, Cliff, and Bruten’s (1996) failed attempts at evolving
schooling behaviour in artificial fish provide an account of the difficulties faced:

“The problem appears to be due to the difficulty of formulating an evaluation function
which captures what schooling is. We argue that formulating an effective fitness evalu-
ation function for use in evolving controllers can be at least as difficult as hand-crafting
an effective controller design. Although our paper concentrates on schooling, we believe
that this is likely to be a general issue, and is a serious problem which can be expected to
be experienced over a variety of problem domains.”

Zaera et al. considered possible reasons for their failure. The argument which most convinced
them was that real schooling arises through complex interactions, and that their simulations lacked
sufficient complexity (their section 5). They cited two promising works: Reynolds’ (1992) evolution
of coordinated group motion in prey animats pursued by a hard-wired predator, and Rucker’s (1993)
ecosystem model in which Boid-like animat controllers (or rather their parameters) were evolved.
Both of these are moves towards more intrinsic, automatic evolution.

The use of coevolutionary models is fast becoming a popular approach in the adaptive behaviour
field. This is essentially a response to the problems encountered when trying to use artificial se-
lection to evolve complex behaviours. However, artificial selection has kept its hold so far – most
systems still use fitness functions. Much of this work is based on the “Red Queen” or “Arms Race”
phenomenon (see Cliff and Miller 1995 and Dawkins and Krebs 1979), an early example of which is
Hillis’ (1990) coevolution of sorting networks and their test cases. Hillis concluded his paper with the
statement: “It is ironic, but perhaps not surprising, that our attempts to improve simulated evolution
as an optimisation procedure continue to take us closer to real biological systems” (p. 233).

As with Hillis’ paper, the reason given for imposing coevolution is often that it provides “a useful
way of dealing with the problems associated with static fitness landscapes” (Bullock 1995, section 5).
It appears that few of those working with artificial selection intentionally use coevolution as a step
towards intrinsic evolution. Notably, Reynolds (1994) of Boids fame worked towards more auto-
matic evolution by coevolving simulated mobile agent controllers which competed with each other
in games of Tag. This eliminated the need to design a controller in order to evolve a controller, as in
his previous work (Reynolds 1992) mentioned above.

4.2 (No) Emergence via artificial selection

From the above discussion, one might imagine our argument to be developing toward the extreme
statement that evolutionary emergence is not possible in a system using artificial selection. This is
not quite so, although we do argue that artificial selection is not sufficient. We now give an example
of emergence from a genetic algorithm which Ray (1996) would classify as using “partial natural
selection” (section 2.8), in that the interactions between artificial entities play a role commensurate
with the artificial fitness function aspect of selection.

Sannier and Goodman (1987) used a distributed GA to evolve genomes within a two-dimensional
toroidal grid containing “food” which is placed into the environment according to some pattern. An
individual’s “strength” (fitness), which is deducted from its parents’ strengths at birth, increases

6

on consumption of food and decreases in each time step (and upon reproduction). An individual
is reproduced if its strength is above a threshold, and killed if its strength drops below a lower
threshold. A genome encodes rules which allow it to move in eight directions (N, NE, E, SE, . . .) with
program branching conditional on the presence of food in the eight neighbouring locations. Thus,
the individuals can interact (only) by moving around and consuming food, so affecting each other’s
program branching.

In the experiment reported, food was restricted to two farm areas, spaced apart in the toroidal
world. The level of food introduced into the farms was varied periodically. When one farm was
having its summer, the other would be having its winter. A farm’s potential was set lower the more
it was either over-consumed or neglected (under-consumed) during the previous period.

Two classes of individual emerged: farmers who stayed put in one of the farms, their populations
rising and falling with the seasons, and nomads who circled the world, moving in such a way that
they passed through both farms during their summers. The nomad population increased as it went
through a farm and decreased as it moved through the area without food. Notice the new descriptive
categories: farmer and nomad.

Groups of individuals from each category were extracted from the total population and tested in
the absence of the other category. While farmers could survive without nomads, it was found that
nomads needed farmers so that the farms would not be neglected between visits.

The important feature is the emergence of the two classes of individual. Never was it specified
that they should arise. Evolution produced them because they perform better than other genomes
within the environment. The previous paragraph demonstrates the need to update our model to
include the new descriptive categories.

It would, of course, be fraudulent on our part to claim that this is an example of emergence
via artificial selection. In this partial natural selection system, the artificial component of selection
is incidental to the emergence, the source of which is the natural component of selection arising
from interactions of the system’s parts. The statement that “artificial selection is not sufficient [for
evolutionary emergence]” (from the first paragraph of this subsection) does not imply a necessity
for (or even benefit of) artificial selection. In the context of evolutionary emergence, any artificial selection
used constitutes just one of the parts of a system.

In summary, artificial selection can only select for that which is specified. Therefore anything that
emerges during evolution (in the evolutionary emergence sense) must result from another aspect of
selection, which must in turn arise from the innate dynamics of the system – natural selection.

Artificial selection can result in evolved solutions that an experimenter had not anticipated. For
example, a highly fit solution might only use a fraction of the genotype that had been made available
and thought necessary, or a solution might exploit properties of the phenotype that had previously
been unknown. However, examples such as the former do not require an extension to the observer’s
model, and examples such as the latter require an extension that is the product not of evolution, but
of the observer’s lack of knowledge. Neither qualifies as evolutionary emergence by our definition.

5 Natural selection

Natural selection retains the fitter individuals (those that persist) without any explicit specification
of what is required to be fit, which changes as the system evolves. This feedback in the selection
process is the vital factor missing from purely artificial selection systems (figure 1).

As noted in section 3, genetic codings of computer program instructions result in rugged fitness
landscapes and this makes them unsuitable for incremental evolution by artificial selection. One
would expect this argument to carry through to natural selection systems, where fitness is an abstract
concept or external measure. However, the approach of most natural selection work to date has been
to evolve program code, following the initial success of Tierra (Ray 1991) which demonstrated incre-
mental evolution over millions of reproduction cycles. Despite a lack of continuing emergence, this
early success needs to be explained against the argument that computer programs are not suitable
for incremental evolution.

7

GAs for function Natural Evolution
 optimisation

Example: if one of two species which share resources improves
sufficiently, the other either improves or becomes extinct

 fitness proportion
 of population

 time time

 NOT GOOD GOOD FOR EMERGENCE

FOR EMERGENCE (DO NOT HAVE TO SPECIFY WHAT IS GOOD)

Figure 1: The difference between artificial and natural selection.

5.1 Natural selection of program code

Tierra is a system of self-replicating machine code programs. As an evolutionary biologist, Ray was
interested in comparing artificial evolution with that in the real world. To make evolution possible,
a certain rate of random bit-flipping was imposed on the memory within which the population of
running code resided. Each program was allowed to write to the block of memory it occupied but
not outside that block. However, programs could read and execute instructions from any part of
memory.

The population was initialised as a single manually-designed, self-replicating program. This pro-
gram first examined itself to determine its length in memory, then issued an instruction to allocate
free memory for a child, copied its code byte by byte to this free memory and finally issued an in-
struction to treat the child as an independent process.

A degree of artificial selection was imposed by the system itself deleting the oldest programs to
free memory when it was full beyond a certain threshold, with an added bias against programs that
generated error conditions. As emphasised at the end of section 4, this artificial selection constitutes
just one of the parts of the system. It does not (necessarily) prevent natural selection.

Tierra was implemented as a virtual computer, allowing Ray to design a machine language with
some properties suiting it to evolution. One aspect of this language was that it contained no numeric
constants. This was to reduce the brittleness of the language by decreasing the size of the “real”
instruction set, in which add 1 and add 2 are considered to be distinct instructions. Thus, direct
memory addressing was not possible, in either a relative or absolute form. Instead, the manually-
designed program began and ended with consecutive NOPs (No-OPerations) which acted as tem-
plates that could be found by certain machine code instructions which search memory backwards
or forwards in a single step. This addressing by templates is how the program examined itself to
determine the points at which to begin and end copying and so also its length.

Computational errors were introduced at random. For example, a left bit-shift instruction would
sometimes shift a register’s bits two positions, sometimes not at all. A copy instruction would oc-
casionally copy to a neighbour of the correct location. Such errors could lead to genetic changes by
affecting replication.

When Tierra was run, various classes of programs evolved. “Parasites” had shed almost half of
their code, allowing them to replicate almost twice as fast; they replicated by executing the copy loop
from neighbouring organisms, which could easily be found by template matching instructions as be-
fore. Because the parasites depended on their “hosts”, they could not displace them and the host and
parasite populations entered into Lotka-Volterra population cycles, characteristic of predator–prey
and parasite–host systems (Lotka 1925; Volterra 1926). Ray reported that coevolution occurred as the
hosts became immune to the parasites, which overcame these defences, and so on. “Hyper-parasite”
hosts emerged containing instructions that caused a parasite to copy the host rather than the para-

8

site; this could lead to the rapid elimination of the latter. Ray also reported cooperation (symbiosis)
in replication followed by “cheaters” (social parasites) which took advantage of the cooperators.

The above are examples of ecological adaptations, which involved interactions between the pro-
grams. Another class of adaptations found was optimisations, where individual programs replicated
faster than their ancestors. For example, non-parasitic replicators almost a quarter the length of the
initial replicator were found, as were programs with unrolled copy loops which copied two or three
bytes per loop, reducing the overhead of looping. By adding split and join instructions, which al-
lowed a program to split into a multi-threaded process and join back into a single one, the evolution
of efficient parallel-processing replicators was later achieved.

While the results of Tierra are impressive, the system is not truly open-ended. There have been
no new reports of emergent phenomena during the last few years and it is generally accepted that
not much more will occur unless further alterations are made to the system, as with the addition of
the split and join instructions. Indeed, Ray (1996) is currently establishing a “biodiversity reserve for
digital organisms” (section 5.2) based on a networked version of Tierra, in an attempt to generate
more complex organisms. His hope is that the increased scale will hold an ecological community of
many species, with the network model providing initial selective forces resulting from its temporal
and spatial complexity. “Once a significant impulse in the direction of complexity has occurred, the
hope is that selective forces arising from interactions among the digital organisms can lead to an
auto-catalytic increase in complexity” (section 5.2.2). However, this system has not yet produced any
encouraging results – see Ray (1997).

The evolvability of the code seems to stem largely from the template matching system. This could
account for all of the ecological adaptations reported but would be of little use for much other than
replication. To see how this could be, consider the pseudocode of the initial, manually-designed
algorithm (1).

T1111 a=address(T1110)+1 ; b=address(T1111) ; c=a-b
T1101 allocate memory for child, length c =>a=start

call T1100 ; divide from child ;jump to T1101
T1100 push a,b,c onto stack
T1010 memory(a)=memory(b)

c-- ; if c=0 then jump to T1011
a++ ; b++ ; jump to T1010

T1011 pop c,b,a off stack ; return

9>>=
>>;

copy
loop

T1110

Algorithm 1: Pseudocode for Tierra’s initial, manually designed program.

This pseudocode is based on the initial program as listed in Ray (1992, appendix C). The T????s
on the left denote four-bit templates (with the same bits as the real templates), which can be thought
of as labels; the difference is that a jump or call instruction will search outwards in memory to find
the nearest matching template. Now, as reported by Ray (1992, section 3.1.1), a parasite can be
obtained by simply mutating one bit of the T1100 template to produce T1110 ; this would then be
the same as the end template, reducing the length to be copied (c), and the call T1100 statement
would search outwards in memory until it found a host containing the copy loop. Further, a host
that is immune to such a parasite can also be produced by a single-bit template mutation of the
initial program. To be more exact, a single-bit mutation in the template-comparison 1011 in the
if c=0 then jump to T1011 statement of the copy loop achieves this; by mutating it to 1111 ,
the program will re-evaluate its address and length after every reproduction. Thus, should a parasite
try to use this program’s copy routine, it will be copied just once but ever after that it will be copying
the host; this host is also a hyper-parasite as defined above. In just two template bit-flips, we have
reproduced the most impressive ecological results of Tierra! While the actual evolution might have
taken a slightly different route, to slightly different programs, these phenomena clearly result from
the flexibility of the template matching. It is also clear that the same argument applies to the other
ecological adaptations reported.

9

Although this demonstrates the flexibility of template matching at the four-bit level, it also shows
the ecological results to be somewhat less dramatic than first impressions suggest. Complex pro-
grams would necessarily contain many more templates (labels) and so these templates would have
to be significantly longer. Thus, we would pass far beyond the simple four-bit templates that ran-
dom search can operate on, to a stage where evolution is impractical. So, Tierra no longer constituting
evidence to the contrary, we hold to our previous argument that programs are not suitable for (long-
term) incremental evolution. Note that we are not dismissing Ray’s work as trivial or unimportant;
we consider Tierra to be a significant milestone in the artificial evolution field – the first intentional
example of naturally arising coevolution in an artificial evolutionary system.

There is still the issue of the optimisation adaptations to address. If programs are too brittle
for (long-term) incremental evolution, then how was it that these adaptations evolved? Two of the
results, unrolled copy loops and efficient replication by parallel processing, can be easily explained.
All evolution needed to do was insert (probably by the action of the random computational errors)
repetitions of neighbouring code; the local functionality was not changed and the efficiencies are
from more-of-the-same solutions. These examples should not alter our perception of the brittleness
in mutating code or inserting different instructions. The final results to be explained are the non-
parasitic replicators almost a quarter the length of the initial replicator. Comparing the shortest self-
replicating program (Ray 1992, appendix D) with the initial program (appendix C) shows that the
transition can be made by simply deleting instructions (mostly NOPs – cutting out the redundancy in
the templates) and just six mutations, three of which are completely unnecessary. So apart from three
mutations, this is a less-of-the-unnecessary solution, which is insufficient to challenge our argument.

Computer Zoo (Skipper 1992), inspired by Ray, shared most of the features of Tierra and demon-
strated very similar results. Skipper noted that remote execution is essential to the evolution of
parasites and hyper-parasites. There have been many other Tierra-inspired systems, such as Avida
(Adami and Brown 1994) and Cosmos (Taylor and Hallam 1997), all of which failed to produce signif-
icantly more impressive results. There are other possible explanations for this, including an inability
on our part to detect further evolutionary emergence, and/or a deficiency in the language that lies
not in its brittleness but in its lack of expressive ability within the system. However, we believe that
the discussion presented here eclipses such possibilities, in that it provides a sufficient explanation.

One piece of work often cited as an example of evolving programs by natural selection is that of
Koza (1993). We omit a full discussion here because, although natural selection is possible within
the presented framework, the improvements reported result from artificial selection involving eval-
uation at a task. The only example of emergence reported was the existence of 604 self-replicating
programs in a set of 12,500,000 randomly generated programs. There was no emergence resulting
from evolution.

5.2 The evolution of more suitable entities via natural selection

Although the approach of most natural selection work to date has been to evolve program code, there
are two notable exceptions. Both involve the evolution of neural networks, which are well suited to
incremental artificial evolution because of their graceful degradation (high degree of neutrality). The
second (chronologically) is the work described in this paper, which was conceived (Channon 1996)
independently of and initially created in ignorance of both Tierra (including its derivatives) and the
first exception: PolyWorld (Yaeger 1993). Yaeger stated three motivations for his work, including
the production of emergent complex behaviours and the exploration of artificial life as a route to
artificial intelligence. These are (very) similar to the motivations behind the work presented here.
However, his other motivation is what sets PolyWorld’s design apart; it was “to create artificial life
that is as close as possible to real life, by combining as many critical components of real life as possible
in an artificial system” (p. 264). Hence PolyWorld simulates many aspects of the real world including
energy conservation, food, movement (on a 2D plane), vision, neural networks and learning.

PolyWorld organisms have seven pre-programmed behaviours: eating, mating, fighting, mov-
ing, turning, focusing and lighting. These are expressed according to the activation levels of pre-
specified neurons. An organism’s chromosome determines its physiology (size, strength, maximum
speed, green coloration, mutation rate, number of crossover points and life span) and some basic
characteristics of its neural network. These characteristics include the number of neurons devoted to

10

vision (in three groups – red, green and blue), the number of internal neuronal groups, a connectivity
density (between groups) matrix and Hebbian learning rates. The neural networks are constructed
stochastically.

PolyWorld is initially seeded with random genomes and run as a steady-state GA using an ad
hoc fitness function until a population is achieved that maintains its number through mating. This
occurred in the seed population of some runs, yet not at all in others. Yaeger reported a variety
of emergent behaviours, including some trivial ones but also “fleeing”, “fighting back”, “grazing”,
“foraging” and “following”. He also claimed that a drifting group of organisms and “one exam-
ple of a few organisms [apparently] ‘chasing’ each other were even suggestive of simple ‘flocking’
behaviours” (p. 285), although this seems somewhat speculative.

One criticism of PolyWorld, in the context of perpetual evolutionary emergence, is that (Heb-
bian) learning appears to be overwhelmingly responsible for the results. There is little evidence of
significant genetic evolution; the genomes had very limited control over the small number of neural
groups. It is conceivable that if comparison PolyWorld experiments were run with birth networks
specified by random parameters (or perhaps constant parameters which result in large enough neu-
ral networks), then the same results might emerge. New organisms would either learn such that
they become adapted to the evolving environment or die, and so evolution would occur without
genetic change. Although this is valid evolutionary emergence, it is not sufficient for perpetuating
evolutionary emergence. Unless learning is made evolvable, or what is learned can be passed on, a
maximal level will be reached at which organisms are not capable of learning more in their lifetimes.

Channon’s own experimental system – detailed here in full, but see also Channon (1996), Chan-
non and Damper (1998a) and Channon and Damper (1998b) for the development of the ideas behind
it – shares many features with PolyWorld, despite having been conceived without knowledge of
Yaeger’s work. However, because it does not attempt to simulate aspects of the real world, it is con-
siderably simpler. Most important, there is no learning in the neural networks, purposely to avoid
the criticism above. Further, there is no obvious implicit fitness function, such as the “energy” in
PolyWorld, that might dominate selection. The results reported here are comparable with (but do
not exceed) those of PolyWorld, despite this removal of learning.

6 Developmental requirements

Natural selection is necessary for evolutionary emergence but does not guarantee the evolution of
evermore novel emergent phenomena. The question “what class of objects can/should we evolve?”
needs to be answered with that in mind, along with the central aim: increasingly complex advan-
tageous behaviours. Neural networks are the clear choice because of their graceful degradation (as
noted in section 5.2) and suitability for this aim. But how should the network structure be specified?

The evolutionary emergence of novel behaviours requires new neural structures, or “modules”.
We can expect most to be descended from neural structures which once had different functions (Mayr
1960). There are many known examples of neural structures that serve a purpose different from a
previous use, for example Stork, Jackson, and Walker (1991).

Theory tells us that genes are used like a recipe, not a blueprint. In any one cell, at any one stage
of development, only a tiny proportion of the genes will be in use. Further, the effect that a gene has
depends upon the cell’s local environment – its neighbours.

The above two paragraphs are related. For a type of module to be used for a novel function (and
then to continue to evolve from there), without loss of current function, either an extra module must
be created or there must be one spare (to alter). Either way, a duplication system is required. This
could be either by gene duplication or as part of a developmental process.

Gene duplication can be rejected as a sole source of neural structure duplication, because the
capacity required to store all connections in a large network without a modular coding is genetically
infeasible. Therefore, for the effective evolutionary emergence of complex behaviours, a modular
developmental process is called for. For the sake of research validity (regarding long-term goals),
this should be included from the outset.

Most artificial neural networks (ANNs) that have been manually designed are layered feed-
forward networks. However, recurrent networks can have internal state sustained over time and

11

demonstrate rich intrinsic dynamics. This makes them attractive for use in behaviour-based work.
Evidence from neuroscience provides further support, as biological neural networks are frequently
recurrent. Although recurrent ANNs can be very hard to study (Boers and Kuiper 1992, p. 40), ar-
tificial evolution should have no problem using them. Indeed, there seems to be little reason to
constrain the evolution to feed-forward networks, especially when aiming for organisms that are to
act as complex dynamical systems working within a time frame.

6.1 Gruau’s cellular encoding

Gruau (1996) used genetic programming techniques (Koza 1992) to evolve his cellular programming
language code to develop modular artificial neural networks. The programs used are trees of graph-
rewrite rules whose main points are cell division and iteration.

The crucial shortcoming is that modularity can only come from either gene duplication (see objec-
tions above) or iteration. But iteration is not a powerful enough developmental backbone. Consider,
for example, the cerebral cortex’s macro-modules of hundreds of mini-columns. These are compli-
cated structures that cannot be generated with a repeat one hundred times: mini-column
rule. There are variations between modules.

So, with GP techniques, we are reduced to gene duplication for all but simple iterative struc-
tures. What is required is a rule of the sort follow (rules X) where (rules X) is a marker
for (pointer to) rules encoded elsewhere on the genotype. But this would be difficult to incorporate
into GP. A better route is to use a system capable of such rules.

6.2 Cellular automata

Many investigators have used cellular automata (CA) for the construction of neural networks, for
example Gers and de Garis (1996) and Lee and Sim (1998). However, such work is more often at the
level of neuron growth than the development of whole operational (rather than just large) networks.
The working networks developed to date have been only basic. Although CA rules are suited to the
evolution of network development in principle, the amount of work remaining makes this a major
research hurdle.

6.3 Diffusion models

Although there are examples of work involving the evolution of neural networks whose develop-
ment is determined by diffusion along concentration gradients, for example Vaario and Shimohara
(1997), the resulting network structures have (to date) been only basic. So as to concentrate on the
intended area of research, these models have also been passed over.

6.4 Lindenmayer systems

As mentioned above, developmental biology shows that genes provide a recipe for each cell to follow
and that the activation of relevant genes is determined by a cell’s immediate environment. All cells
use the same set of rules, derived from the genes.

Lindenmayer systems (L-systems) were developed to model the biological growth of plants (Lin-
denmayer 1968). They are a class of fractals which apply production rules in parallel to the cells of their
subject. A specified axiom subject (typically one or two cells) develops by repeated re-application of
these rules. Each step in a cell’s development can be determined by its immediate environment, in-
cluding itself. In general, the most specific production rule that matches a cell’s situation is applied.

Kitano (1990) used an L-system with context-free rules to evolve connectivity matrices. The num-
ber of rules in the genotype was variable. After each developmental step, the matrix would have
doubled in both width and height. Kitano demonstrated better results than direct encoding when
evolving simple ANNs (such as XOR and simple encoders) using training by error back-propagation.
He also showed that the number of rules could be small.

12

Figure 2: The experimental world (Geb).

Boers and Kuiper (1992) used an L-system with context-sensitive rules to evolve modular feed-
forward network architectures. A fixed-length alphabet was used for the rules, restricting the possi-
ble network architectures but still producing some good results. The evolution of production rules
used a conventional genetic algorithm, with fixed-length genomes initially randomised. A limit of
six rewrite passes over the network string was imposed.

Both these works used back-propagation to train the evolved networks. Also, the resulting struc-
tures were fully-connected clusters of unconnected nodes (i.e. no links within clusters and if one
node in cluster A is linked to one node in cluster B then all nodes in A are linked to all nodes in B).
It may be that the results achieved reflect the workings of back-propagation more than evolution.
However, these works demonstrate the suitability of L-systems to non-iterative modular network
development.

7 Experimental system definition

A system believed to be better suited to incremental artificial evolution by natural selection has been
created, both to verify and extend the theory of evolutionary emergent systems generation presented
thus far. Geb (named after the Egyptian god of the Earth) is a two-dimensional toroidal virtual
world containing autonomous organisms, each controlled by a neural network. Neural networks
were chosen with the aim of achieving sufficient genetic neutrality. Insufficient genetic neutrality
is a pitfall in the evolution of computer program instructions, where no new genes (subroutines,
at the pseudocode/descriptive level) have yet evolved. The networks are produced from bit-string
genotypes by a developmental process, chosen with both genetic neutrality and the developmental
requirements of the previous section in mind. No lifetime learning is used, to ensure that all results
can be attributed to genetic evolution (an asset made clear in sections 5.2 and 6.4). Evolution within
Geb is strictly by natural selection. There are no global system rules that delete organisms; this is
under their own control.

Geb’s world (figure 2) is divided into a grid of squares: 20 � 20 of them in most runs. No two
individuals can occupy the same square at any one time. This effectively gives the organisms a size

13

within the world and puts a limit on their number. Individuals are otherwise free to move around
the world, within and between squares. As well as a position within the world, each organism has
a forward (facing) direction, set randomly at birth. Organisms are displayed as filled arcs, the sharp
points of which indicate their direction.

Geb’s main algorithm is detailed in algorithm 2.

Initialisation

Every square in the world has an individual with a single-bit genotype 0 born into it.

Main Loop

In each time step (loop), every individual alive at the start of the cycle is processed once. The order in which
the individuals are processed is otherwise random.

The steps involved for each individual are:

1. Network inputs are updated. See section 7.2.

2. Development – an iteration of the ontogenesis mechanism. See section 7.3.

3. All neural activations, including network outputs, are updated. See section 7.1.

4. Actions associated with certain network outputs are carried out according to those outputs. These
actions are reproduce, fight, turn anti-clockwise, turn clockwise, and move forward. See section 7.2.

Algorithm 2: Geb’s main algorithm.

7.1 Geb’s neural networks

The ANNs used in Geb are recurrent networks of nodes as used successfully by Cliff, Harvey and
Husbands in their evolutionary robotics work (Cliff, Harvey, and Husbands 1992; Harvey, Husbands,
and Cliff 1992; Husbands, Harvey, and Cliff 1993). The neural model (figure 3) is based on McCul-
loch and Pitts’ (1943) original proposal, which includes a distinct inhibitory mechanism (rather than
the more prosaic positive-or-negative synaptic weights as typically used in parallel distributed pro-
cessing systems). Cliff et al. evolved recurrent networks of these nodes for visual navigation tasks in
simple environments.

The level of noise here (0.6 – see figure 3) is significantly higher than that used by Cliff et al. (0.1).
This is because noise is the only source of activation in Geb and, with the developmental method
outlined below, it is easy for evolution to produce generator units (Husbands, Harvey, and Cliff 1993),
which are sources of high output. A corresponding (high) decision threshold for organisms’ binary
(yes/no) actions, such as reproduction, is used. Thus, full control is available (via inhibition and
generator units), early random binary actions are at a sensible level and early random multi-valued
actions (such as moving forwards by a distance) can be at a reasonably high level without having to
be scaled such that the maximum possible is unreasonably high. The neurons’ veto threshold (0.5 –
see function U in figure 3) is equal to the decision threshold for organisms’ binary actions. All links
have unit weight; no lifetime learning is used. This is to avoid the criticism that lifetime learning
may be the main factor, as levelled at PolyWorld in section 5.2.

Each node has a bit-string character (label) attached to it, used to match organisms’ network in-
puts, outputs and actions, and to determine the node’s development during the individual’s lifetime.
These characters may be of any non-zero length. A node may be a network input, a network output,
or neither. This is determined by the developmental process.

14

Sum

Multiply
*

Excitatory

t

Delay

Noise

PDF

-0.6 +0.6

1

V

0

Sum

Excitatory

T

U

1

1

+

+

t

Delay
Inhibitory

0 2

0.50

Inhibitory

Figure 3: Schematic of a neuron, from (Cliff, Harvey, and Husbands 1992).

7.2 Organism—environment interactions

There are five built-in actions available to each organism. Each is associated with network output
nodes whose characters start with a particular bit-string:

1. 01... Try to reproduce with organism in front

2. 100... Fight: Kill organism in front (if there is one)

3. 101... Turn anti-clockwise

4. 110... Turn clockwise

5. 111... Move forward (if nothing in the way)

For example, if a network output node has the character 1101001 , then the organism will turn
clockwise by an angle proportional to the excitatory output of that node. If an action has more than
one matching network output node, then the relevant network output is the sum of these nodes’
excitatory outputs, bounded by unity as within any node. If an action has no network output node
with a matching character, then the relevant network output is noise, at the same level as in the
(other) nodes.

Both reproduce and fight are binary actions. They are applied if the relevant network output ex-
ceeds a threshold and have no effect if the square in front is empty. Turning and moving forward are
done in proportion to excitatory output.

When an organism reproduces with another in front of it, the child is placed in the square beyond
the other individual if that square is empty. If not, the child replaces the individual being mated with.
An organism cannot reproduce with an individual that is fighting if this would involve replacing the
fighting individual.

Reproduction involves crossover and mutation. Geb’s crossover always offsets the cut point in
the second individual by one gene (bit position), with equal probability either way. This is why the
genotype lengths vary. Also, crossover is strict, always using genes from both parents; the cut point
cannot be at the very end of either genotype. This provides significant initial pressure for length
increase until genotypes are long enough to produce developmental rules. Mutation at reproduction
is a single gene-flip (bit-flip) on the child genotype. Figure 4 gives a simple illustrative example of
the crossover and mutation used (although note that genotype lengths in the thousands would be
more representative).

An organism’s network input nodes have their excitatory inputs set to the weighted sum of the
excitatory outputs from matching network output nodes’ of other individuals in the neighbourhood.

15

Parent 1’s genotype: 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1
^--- cut point in parent 1

Parent 2’s genotype: 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
^--- cut point in parent 2

--
Child’s genotype: 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1

^-- mutation point

Figure 4: Example of crossover and mutation.

If the first bit of a network input node’s character is 1 then the node takes its input from individ-
uals to the right hand side (including forward- and back-right), otherwise from individuals to the
left. A network input node matches a network output node if the rest of the input node’s charac-
ter is the same as the start of the character of the output node. For example, a network input node
with character 10011 matches (only) network output nodes with characters starting with 0011 in
the networks of individuals to the right. The weights are inversely proportional to the Euclidean
distances between individuals. Currently the input neighbourhood is a 5 � 5 square area centred on
the relevant organism.

Notice that the network output nodes with characters 0, 1, 10 , 11 and all those starting with 00
do not produce any action. However, their excitatory values can still be input by other individuals.
Thus, there is the potential for data exchange not directly related to the actions.

7.3 Developmental system

A class of L-systems with context-free production rules was designed for the evolution of networks
of the neurons outlined above. Specific attention was paid to producing a system in which children’s
networks resemble aspects of their parents’ ANNs. A genotype determines the L-system’s produc-
tion rules which determine the organism’s neural development. Thus, the production rules evolve.

Every node is processed once during each developmental step. The production rule that best
matches the node’s character is applied (if there is one). A rule matches a node if its predecessor is
the start of the node’s character. So an empty (zero-length) predecessor matches any node’s character
and a predecessor cannot match a node’s character that is shorter than it. The longer the matching
predecessor, the better the match; the best matching rule (if any) is applied. Thus, ever more specific
rules can evolve from those that have already been successful.

The production rules have the following form:

P ! Sr;Sn ; b1; b2; b3; b4; b5; b6

where:

P Predecessor (initial bits of node’s character)
Sr Successor 1: replacement node’s character
Sn Successor 2: new node’s character
bits: link details [0=no,1=yes]:
(b1; b2) reverse types [inhibitory/excitatory] of

(input, output) inherited links on Sn
(b3; b4) (inhibitory, excitatory) link from Sr to Sn
(b5; b6) (inhibitory, excitatory) link from Sn to Sr

The successors (1 and 2) are characters for the node(s) that replace the old node. If a successor has
no character (0 length) then that node is not created. Thus, the predecessor node may be replaced
by 0, 1 or 2 nodes. Necessary limits on the number of nodes and links are imposed.

The replacement successor (successor 1, if it has a character) is just the old (predecessor) node, with
the same links but a different character. The new successor (successor 2, if it has a character) inherits a

16

Rule1: <0>->011*1101*010001
Rule2: <00>->101**011100
Rule3: <011>->*0110*001100
Rule4: <1101>->110*1010*011001

S *Snr * 1b 2b 3b 4b b b65<P>->
Rule format:

reproduce)output:(

age = 0
(axiom network)

reproduction
input from left:()

iL01

001

000

01

o01
reproduce)output:(

(input from right:
reproduction)

output: turn
clockwise()

age = 1

iR01

1101

o1101o011

011

101

101

Rule1

Rule2

Rule2

Rules3,4

()output: turn
anti-clockwise

output: turn
clockwise()reproduce)output:(

(input from right:
reproduction)

inhibitory link
indicates an

age = 2

101

101

110 10100110

o0110 o110 o1010

iR01

Figure 5: Example neural network development.

copy of the old node’s input links unless it has a link from the old node (b3 or b4). It inherits a copy
of the old node’s output links unless it has a link to the old node (b5 or b6).

New input nodes are (only) produced from input nodes and new output nodes are (only) pro-
duced from output nodes. The character-based method of matching up inputs and outputs ensures
that the addition or removal of a input/output node at a later stage of development or evolution will
not damage the relationships of previously adapted inputs and outputs.

The axiom network consists of three nodes with two excitatory links. The network output node’s
character (01) matches reproduction, the network input node’s character (left input 01) matches this
without matching any of the other action characters, and the hidden node’s character neither matches
nor is matched by the other nodes’ or the action characters:

network input 001 7�! 000 7�! 01 network output

Development takes place throughout the individual’s life, although necessary limits on the num-
ber of nodes and links are imposed. Figure 5 provides an example of the development of a very
simple network.

7.4 Genetic decoding

The genetic decoding of production rules is loosely similar to that of Boers and Kuiper (1992). For
every bit of the genotype, an attempt is made to read a rule that starts on that bit. A valid rule is one
that starts with 11 and has enough bits after it to complete a rule.

To read a rule, the system uses the concept of segments. A segment is a bit string with its odd-
numbered bits (1st, 3rd, 5th, . . .) all 0. Thus, the reading of a segment is as follows: read the current
bit; if it is a 1 then stop; else read the next bit – this is the next information bit of the segment; now

17

Genotype: 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0
Rules: i) <>-> 1 * 0 * 0 1 1 1 0 0

ii) < 1>-> 0 * 1 * 1 0 0 0 0 0
Format: < P >-> Sr * Sn * link bits

Figure 6: Example rule generation.

start over, keeping track of the information bits of the segment. Note that a segment can be empty
(have no information bits).

The full procedure to (attempt to) read a rule begins with reading a segment for each of the
predecessor, the first successor (replacement node) and the second successor (new node). Then, if
possible, the six link-details bits are read. If this is achieved before the end of the genotype then a
rule is created. Figure 6 shows an example.

After reading all possible rules from a new-born’s genotype, Geb filters the rules. It starts with
rules whose predecessors best match a node in the axiom network, and then repeatedly adds in the
best matching new rules if possible and as required, matching predecessors to the successors of rules
already picked. Rules that have not been picked when this process stops (because no new rules can
be added under the criteria) have predecessors that could never match a node during development,
at least not as well as another rule. In this way the redundant rules, which constitute the vast majority
of decoded rules from long genotypes, are filtered out, much reducing memory required by Geb.

During this process, a further criterion must be met for a rule to be added: the gene-segment the
rule was decoded from must not overlap with a gene-segment of any rule already picked. This pre-
vents the otherwise common situation of a rule P!R,N ;bits producing successors R and N which
can then be subject to rules R!N ,B;C and N!B,C;D (and so on) as would be the case whenever
P ends in 1 or R ends in 1. So, without this criterion, certain rules (such as those where P ends in 1)
would not be possible independently; they would automatically produce rules (such as R!N ,B;C)
which interfere with their successors.

8 Results

The system has consistently produced some important macro-level behaviours, although obviously
the details of its evolution are different every time. This makes it difficult to describe the behaviour
except by focusing on some typical and interesting observations.

8.1 Kin similarity and convergence

When two Geb organisms (with networks developed from more than just a couple of production
rules each) reproduce, the child’s network almost always resembles a combination of the two par-
ents’ networks. Examination of a larger number of networks from Geb’s population, at any time,
shows similarities between many of the networks. The population remains nearly-converged, in
small numbers of species, throughout the evolution. The criterion of a sufficiently correlated (im-
plicit) fitness landscape has been met by the developmental system, making it suitable for long-term
evolution. The remaining results are the proof of this suitability and so justify the claim that the use
of neural networks can result in sufficiently correlated landscapes and further that Geb achieves this
within a modular development system.

8.2 Emergent collective behaviour

Once Geb has started, there is a short period while genotype lengths increase until capable of con-
taining a production rule. For the next ten to twenty thousand time steps (in typical runs), networks
resulting in very simple strategies such as do everything and always go forwards and kill dominate the

18

Figure 7: A dominant organism’s neural network.

population. Some networks do better than others but not sufficiently well for them to display a
dominating effect on Geb’s world window.

In every run to date, the first dominant species that emerges has been one whose individuals turn
in one direction while trying to fight and reproduce at the same time. Figure 7 shows an example
of such an individual. Network outputs are prefixed with o, inputs with i . Input characters are
shown with their first bit translated from 0,1 to L,R (left,right). Note the network outputs o101 ,
o01 [x2] and o100 (turn anti-clockwise, reproduce and fight). Note also the large number of links
necessary to pass from network inputs to outputs, and the network input characters which match
non-action output characters of the same network (o000 [x2], o00). Individuals of this species use
nearby members of the same species, who are also turning in circles, as sources of activation (so
keeping each other going).

Although a very simple strategy, watching it in action makes it clear why this is so advantageous.
The individuals keep each other moving quickly, in tight circles. Any attacking organism would
have to either get its timing exactly right or approach in a faster spiral – both relatively advanced
strategies. These dominant individuals also mate just before killing. The offspring (normally) appear
beyond the individual being killed, away from the killer’s path.

8.3 Naturally arising coevolution

Because of the success of this first dominant species (especially their success at killing other organ-
isms), the world always has enough space for other organisms to exist. Such other organisms tend
not to last long; almost any movement will bring them into contact with one of the dominant organ-
isms, helping that species in its reproduction as much as themselves. However, they can make some
progress. Individuals have emerged that are successful at turning to face members of the dominant
species and holding their direction while trying to kill and reproduce. An example of such a “rebel”
(from the same run as figure 7) is shown in figure 8. Note that most rebels have many more nodes
and links; this one was picked for its clarity. The main points to note from this figure are the network
inputs iL000 (left 000) and iR00 (right 00) which match the very non-action output characters that
members of the dominant species use to support each other’s activations (o000 [x2], o00). The net-
work outputs are o100 (fight), o01 (reproduce) and o110 (turn clockwise). By turning clockwise, a
rebel will turn towards its enemy fastest when the enemy is to its right, which is where most of the
rebel’s input is taken from (via the input iR), and hence the side it is best at responding to. Most
rebels have more complicated networks, which are very difficult to comprehend. Indeed, many of
these have proved unassailably difficult to understand in detail.

19

Figure 8: A rebel organism’s neural network.

8.4 Ongoing coevolution

Figures 9 and 10 show running averages of the number of organisms reproducing and killing, from
two typical experimental runs. Each point is the average of the raw data (number of appropriate
organisms) over a window moving along the time axis. This filters out Lotka-Volterra population
cycles and short term random variations, revealing long term shifts. These figures suggest that fur-
ther species emerge, indicating ongoing evolutionary emergence. However, organisms have proved
difficult to analyse beyond the above, even at the behavioural level. All that can currently be said is
that they share characteristics of the previous species but are different.

While it was expected that inhibitory links would play an important role, evolution in Geb has so
far resulted in individuals with very few. This is despite the apparently high potential for inhibitory
links in the developmental system.

9 Conclusions

The emergence of increasingly complex advantageous behaviours requires the perpetuation of evo-
lutionary emergence. While computational emergence can arise via artificial selection, evolution-
ary emergence requires natural selection (by our definitions). The logical progression or aim is the
perpetuation of evolutionary emergence via naturally arising coevolution. However, this requires
long-term incremental evolution and so what we evolve and how we evolve it must be chosen ac-
cordingly. The initial groundwork on “how” has already been covered by SAGA theory – by using
low enough mutation rates that the population evolves as nearly-converged species, with crossover
assimilating beneficial mutations into the species. As for what class of entities to (attempt to) evolve,
computer program instructions are too brittle. Even the use of template matching cannot overcome
that fact. Neural networks are a clear choice because of their graceful degradation.

Natural selection research should be leading the way, through the evolution of neural controllers
within virtual environments, towards the emergence of increasingly complex advantageous be-
haviours. The work presented in this paper has started down that route, with some success. In work
involving pure natural selection, the organisms’ developmental and interaction systems are anal-
ogous to the fitness functions of conventional genetic algorithms. While the general aim involves
moving away from such comparisons, the analogy is useful for recognising how the epistasis (lack
of correlation) of fitness landscape issue transfers across. Certain ontogenetic (developmental) and

20

0.0 100000.0 200000.0 300000.0 400000.0
Time

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

N
um

be
r

of
 o

rg
an

is
m

s

reproducing
killing (&possibly reproducing)

startup 1st dominant 2nd dominant

speciesspecies

Figure 9: Typical run 1 (running averages of population sizes by actions).

0.0 100000.0 200000.0
Time

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

N
um

be
r

of
 o

rg
an

is
m

s

reproducing
killing (&possibly reproducing)

startup 1st dominant 2nd dominant

speciesspecies

Figure 10: Typical run 2 (running averages of population sizes by actions).

21

interaction systems can result in individuals with similar genotypes but very different phenotypes.
Geb organisms satisfy this criterion, because offspring resemble their parents (but are not identical).
Geb’s results prove it to be suited to long-term incremental artificial evolution. This alone is a sig-
nificant result for a modular developmental system. The behaviours identified are encouraging too,
for the increases in complexity were clearly advantageous and in ways not specified by the design –
evolutionary emergence.

Geb provides some useful lessons for the development of the field towards the perpetuation of
such emergence. First the transparency of behaviours has surfaced as an important issue. Neural
networks and other such highly distributed controllers can be suited to long-term evolution, but
analysis of evolved networks soon becomes infeasible as their complexity increases. This was a less
significant problem in the evolution of program code. The recommendation is, therefore, that future
systems should be developed such that behavioural descriptions are as easy to generate as possible,
probably by constructing the systems such that behaviours will be transparent to human observers.

Another lesson learned concerns the specification of lowest-level actions. Geb generated the im-
portant new result of evolutionary emergent advantageous behaviours from a system suited to long-
term incremental evolution. However, alternatives in which the evolvable embodiment of an organ-
ism gives rise to its actions will be necessary for the open-ended evolution of available actions. This
could provide for a far greater range of behaviours, no longer restricted to sequences of predefined
actions.

Future work on the current system includes testing the sensitivity of results to variations in pa-
rameters such as grid size, maximum population size (number of grid squares), mutation rate and
level of noise in the networks. However, although improvements may be possible by tuning param-
eters, greater advances will probably be produced by heeding the above lessons.

This work holds interest not just for those within the artificial evolution field, but for anyone
interested in the generation of systems which outperform their design specifications (cf. Descartes’
Dictum). For there is probably no process other than natural selection that is capable of producing
the open-ended emergence of increasingly complex systems.

Acknowledgements

This work is supported by an award from the United Kingdom’s Engineering and Physical Sciences
Research Council to author ADC. It is a continuation of previous work (Channon 1996) also sup-
ported by an award from the EPSRC (supervisor Inman Harvey, University of Sussex).

References

Adami, C. and C. T. Brown (1994). Evolutionary learning in the 2D artificial life system ‘Avida’ . In
R. A. Brooks and P. Maes (Eds.), Proceedings of Artificial Life IV, pp. 377–381. Cambridge, MA:
MIT Press.

Boers, E. J. W. and H. Kuiper (1992). Biological metaphors and the design of modular artificial
neural networks. Master’s thesis, Departments of Computer Science and Experimental Psy-
chology, Leiden University, The Netherlands.

Brooks, R. A. (1991a). Intelligence without reason. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pp. 569–595. San Mateo, CA: Morgan Kauffman.

Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence 47, 139–159.

Bullock, S. G. (1995). Co-evolutionary design: Implications for evolutionary robotics. Technical
Report CSRP384, University of Sussex School of Cognitive and Computing Sciences.

Cariani, P. (1991). Emergence and artificial life. In C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen (Eds.), Proceedings of Artificial Life II, pp. 775–797. Redwood City, CA: Addison-
Wesley.

Channon, A. D. (1996). The evolutionary emergence route to artificial intelligence. Master’s thesis,
School of Cognitive and Computing Sciences, University of Sussex.

22

Channon, A. D. and R. I. Damper (1998a). Evolving novel behaviors via natural selection. In
C. Adami, R. Belew, H. Kitano, and C. Taylor (Eds.), Proceedings of Artificial Life VI, Los An-
geles, pp. 384–388. Cambridge, MA: MIT Press.

Channon, A. D. and R. I. Damper (1998b). Perpetuating evolutionary emergence. In R. Pfeifer,
B. Blumberg, J.-A. Meyer, and S. Wilson (Eds.), From Animals to Animats 5: Proceedings of the
Fifth International Conference on Simulation of Adaptive Behavior (SAB98), Zurich, pp. 534–539.
Cambridge, MA: MIT Press.

Cliff, D., I. Harvey, and P. Husbands (1992). Incremental evolution of neural network architectures
for adaptive behaviour. Technical Report CSRP256, University of Sussex School of Cognitive
and Computing Sciences.

Cliff, D. and G. Miller (1995). Tracking the red queen: Measurements of adaptive progress in co-
evolutionary simulations. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón (Eds.), Advances
in Artificial Life: Proceedings of the Third European Conference on Artificial Life, pp. 200–218. New
York: Springer Verlag.

Dawkins, R. and J. R. Krebs (1979). Arms races between and within species. Proceedings of the Royal
Society of London B 205, 489–511.

Fogel, L. J. (1962). Autonomous automata. Industrial Research 4, 14–19.

Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). Artificial Intelligence through Simulated Evolution.
New York: John Wiley.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers. Australian Jour-
nal of Biological Sciences 10, 484–491.

Gers, F. and H. de Garis (1996). CAM-Brain: A new model for ATR’s cellular automata based
artificial brain project. In Proceedings of ICES’96: International Conference on Evolvable Systems.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Reading,
MA: Addison-Wesley.

Gruau, F. (1996). Artificial cellular development in optimization and compilation. Technical report,
Psychology Department, Stanford University, Palo Alto, CA.

Harnad, S. (1993). Artificial life: Synthetic vs. virtual. In C. G. Langton (Ed.), Proceedings of Artificial
Life III, pp. 539–552. Reading, MA: Addison-Wesley.

Harvey, I. (1992). Species adaptation genetic algorithms: A basis for a continuing SAGA. In F. J.
Varela and P. Bourgine (Eds.), Towards a Practice of Autonomous Systems: Proceedings of the First
European Conference on Artificial Life, pp. 346–354. Cambridge, MA: MIT Press/Bradford Books.
Also available as report CSRP221, School of Cognitive and Computing Sciences, University of
Sussex.

Harvey, I. (1993a). The Artificial Evolution of Adaptive Behaviour. Ph. D. thesis, School of Cognitive
and Computing Sciences, University of Sussex.

Harvey, I. (1993b). Evolutionary robotics and SAGA: the case for hill crawling and tournament
selection. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 299–326. Reading, MA:
Addison-Wesley. Also available as report CSRP222, School of Cognitive and Computing Sci-
ences, University of Sussex.

Harvey, I. (1997). Cognition is not computation: Evolution is not optimisation. In W. Gerstner,
A. Germond, M. Hasler, and J.-D. Nicoud (Eds.), Proceedings of International Conference on Ar-
tificial Neural Networks (ICANN 97), Special Session on Adaptive Autonomous Agents at ICANN97,
Lausanne, Switzerland, pp. 685–690. Berlin: Springer-Verlag.

Harvey, I., P. Husbands, and D. Cliff (1992). Issues in evolutionary robotics. In J. A. Meyer,
H. Roitblat, and S. Wilson (Eds.), From Animals to Animats 2: Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior (SAB92), pp. 364–373. Cambridge, MA: MIT
Press/Bradford Books. Also available as report CSRP219, School of Cognitive and Computing
Sciences, University of Sussex.

23

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an optimization proce-
dure. Physica D 42, 228–234.

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the ACM 9(3),
297–314.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of
Michigan Press. 2nd edition: MIT Press, 1992.

Holland, J. H. (1992). Genetic algorithms. Scientific American 267(1), 44–50.

Husbands, P., I. Harvey, and D. Cliff (1993). Analysing recurrent dynamical networks evolved for
robot control. In Proceedings of the Third IEE International Conference on Artificial Neural Networks
(IEE-ANN93), pp. 158–162. London: IEE Press.

Kauffman, S. and S. Levin (1987). Towards a general theory of adaptive walks on rugged land-
scapes. Journal of Theoretical Biology 128, 11–45.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph generation
system. Complex Systems 4, 461–476.

Koza, J. R. (1990). Genetic programming: A paradigm for genetically breeding populations of com-
puter programs to solve problems. Technical Report STAN-CS-90-1314, Department of Com-
puter Science, Stanford University, Palo Alto, CA.

Koza, J. R. (1992). Genetic Programming. Cambridge, MA: MIT Press/Bradford Books.

Koza, J. R. (1993). Artificial life: Spontaneous emergence of self-replicating and evolutionary self-
improving computer programs. In C. G. Langton (Ed.), Proceedings of Artificial Life III, pp. 225–
262. Reading, MA: Addison-Wesley.

Langton, C. G. (1989). Artificial life. In C. G. Langton (Ed.), Proceedings of Artificial Life, pp. 1–47.
Redwood City, CA: Addison-Wesley.

Lee, D. W. and K. B. Sim (1998). Evolving cellular automata neural systems 1 (ECANS1). In Pro-
ceedings of The Third Asian Fuzzy System Symposium, Masan, Korea, pp. 158–163.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development. Journal of
Theoretical Biology 18, 280–315. Parts I and II.

Lotka, A. J. (1925). Elements of Physical Biology. Baltimore, OH: Williams and Wilkins. Reprinted as
Elements of Mathematical Biology, Dover Press, 1956.

Mayr, E. (1960). The emergence of evolutionary novelties. In S. Tax (Ed.), Evolution after Darwin, The
University of Chicago Centennial, Vol. I: The Evolution of Life, pp. 349–380. Chicago, IL: University
of Chicago Press.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics 5, 115–133.

Packard, N. H. (1989). Intrinsic adaptation in a simple model for evolution. In C. G. Langton (Ed.),
Proceedings of Artificial Life, pp. 141–155. Redwood City, CA: Addison-Wesley.

Ray, T. S. (1991). An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D. Farmer, and
S. Rasmussen (Eds.), Proceedings of Artificial Life II, pp. 371–408. Redwood City, CA: Addison-
Wesley.

Ray, T. S. (1992). Evolution, ecology and optimization of digital organisms. Technical Report 92-
08-042, Santa Fe Institute, Santa Fe, NM.

Ray, T. S. (1996). Artificial life. In W. Gilbert and G. T. Valentini (Eds.), From Atoms to Minds. Rome:
Istituto della Enciclopedia Italiana Treccani.

Ray, T. S. (1997). Selecting naturally for differentiation. In J. R. Koza, K. D. Deb, M. Dorigo, D. B.
Fogel, M. Garzon, H. Iba, and R. L. Riolo (Eds.), Genetic Programming 1997: Proceedings of the
Second Annual Conference, pp. 414–419. San Francisco, CA: Morgan Kaufmann.

24

Reynolds, C. W. (1992). An evolved, vision-based behavioral model of coordinated group motion.
In J. A. Meyer, H. Roitblat, and S. Wilson (Eds.), From Animals to Animats 2: Proceedings of the
Second International Conference on Simulation of Adaptive Behavior (SAB92), pp. 384–392. Cam-
bridge, MA: MIT Press.

Reynolds, C. W. (1994). Competition, coevolution and the game of Tag. In R. A. Brooks and P. Maes
(Eds.), Proceedings of Artificial Life IV, pp. 59–69. Cambridge, MA: MIT Press.

Rucker, R. (1993). Artificial Life Lab. Corte Madera, CA: Waite Group Press.

Sannier, A. V. and E. D. Goodman (1987). Genetic learning procedures in distributed environ-
ments. Technical report, A.H. Case Center for Computer-Aided Engineering and Manufactur-
ing, Michigan State University, East Lansing, MI.

Skipper, J. (1992). The computer zoo – evolution in a box. In F. J. Varela and P. Bourgine (Eds.),
Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial
Life, pp. 355–364. Cambridge, MA: MIT Press/Bradford Books.

Steels, L. (1994). The artificial life roots of artificial intelligence. Artificial Life Journal 1(1), 89–125.

Stephan, A. (1998). Varieties of emergence in artificial and natural systems. Zeitschrift fur Natur-
forschung C-A Journal of Biosciences 53(7–8), 639–656.

Stork, D. G., B. Jackson, and S. Walker (1991). ‘Non-optimality’ via pre-adaptation in simple neural
systems. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen (Eds.), Proceedings of
Artificial Life II, pp. 409–429. Redwood City, CA: Addison-Wesley.

Taylor, T. and J. Hallam (1997). Studying evolution with self-replicating computer programs. In
P. Husbands and I. Harvey (Eds.), Proceedings of the Fourth European Conference on Artificial Life
(ECAL97), Brighton, pp. 550–559. Cambridge, MA: MIT Press.

Vaario, J. and K. Shimohara (1997). Synthesis of developmental and evolutionary modeling of
adaptive autonomous agents. In W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud (Eds.),
Proceedings of International Conference on Artificial Neural Networks (ICANN 97), Special Session on
Adaptive Autonomous Agents at ICANN97, Lausanne, Switzerland, pp. 721–725. Berlin: Springer-
Verlag.

Volterra, V. (1926). Variations and fluctuations of the number of individuals in animal species
living together. In R. N. Chapman (Ed.), Animal Ecology, pp. 409–448. New York: McGraw-Hill.

Wilson, S. W. (1991). The animat path to AI. In S. W. Wilson and J.-A. Meyer (Eds.), From Animals to
Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior (SAB),
pp. 15–21. Cambridge, MA: Bradford Books/MIT Press.

Yaeger, L. (1993). Computational genetics, physiology, metabolism, neural systems, learning, vi-
sion, and behavior or PolyWorld: Life in a new context. In C. G. Langton (Ed.), Proceedings of
Artificial Life III, pp. 263–298. Reading, MA: Addison-Wesley.

Zaera, N., D. Cliff, and J. Bruten (1996). (Not) evolving collective behaviours in synthetic fish. In
P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S. Wilson (Eds.), From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (SAB96), pp.
635–644. Cambridge, MA: MIT Press/Bradford Books.

