
Perpetuating evolutionary emergence

A.D. Channon and R.I. Damper

Image, Speech & Intelligent Systems Research Group
University of Southampton, Southampton, SO17 1BJ, UK

http://www.soton.ac.uk/˜adc96r
adc96r@soton.ac.uk rid@ecs.soton.ac.uk

Abstract
Perpetuating evolutionary emergence is the key to
artificially evolving increasingly complex systems. In
order to generate complex entities with adaptive be-
haviors beyond our manual design capability, long-
term incremental evolution with continuing emergence
is called for. Purely artificial selection models, such as
traditional genetic algorithms, are argued to be fun-
damentally inadequate for this calling and existing
natural selection systems are evaluated. Thus some
requirements for perpetuating evolutionary emergence
are revealed. A new environment containing simple
virtual autonomous organisms has been created to
satisfy these requirements. Resulting evolutionary
emergent behaviors are reported alongside of their
neural correlates. In one example, the collective
behavior of one species clearly provides a selective
force which is overcome by another species, demon-
strating the perpetuation of evolutionary emergence
via naturally arising coevolution.

1. Evolutionary emergence

Emergence is related to qualitatively novel structures
and behaviors which are not reducible to those hierarchi-
cally below them. It poses an attractive methodology for
tackling Descartes’ Dictum: “how can a designer build a
device which outperforms the designer’s specifications?”
(Cariani, 1991, page 776). Most importantly, it is neces-
sary for the generation of complex entities with behaviors
beyond our manual design capability.

Cariani identified the three current tracts of thought
on emergence, calling them “computational”, “thermo-
dynamic” and “relative to a model” (Cariani, 1991).
Computational emergence is related to the manifestation
of new global forms, such as flocking behavior and chaos,
from local interactions. Thermodynamic emergence is
concerned with issues such as the origins of life, where
order emerges from noise. The emergence relative to a
model concept deals with situations where observers need
to change their model in order to keep up with a system’s
behavior. This is close to Steels’ concept of emergence,
which refers to ongoing processes which produce results
invoking vocabulary not previously involved in the de-
scription of the system’s inner components – “new de-
scriptive categories” (Steels, 1994, section 4.1).

Evolutionary emergence falls into the ‘emergence rel-
ative to a model’ category. Consider a virtual world of
organisms that can move, reproduce and kill according to
rules sensitive to the presence of other organisms, evolv-
ing under natural selection. Should flocking manifest it-
self in this system, we could classify it as emergent in two
senses: firstly in the ‘computational’ sense from the inter-
action of local rules, flocking being a collective behavior,
and secondly in the ‘relative to a model’ sense from the
evolution, the behavior being novel to the system. While
the first is also relevant to our goal, in that complex adap-
tive systems will involve such emergence, the second is
the key to understanding evolutionary emergence.

Harvey’s Species Adaptation Genetic Algorithm
(SAGA) theory (Harvey, 1992) provides a framework for
incremental evolution, necessary for evolutionary emer-
gence. In this paradigm a population, with possibly just a
few tens of members, evolves for many thousands of gen-
erations, with gradual changes in genotype information
content. Increases in complexity must therefore result
from evolution itself. This is in contrast to the common
use of the Genetic Programming (GP) paradigm, where
a population of millions may be evolved for less than a
hundred generations (Harvey, 1997, section 5). In the GP
case, recombination effectively mixes the random initial
population, exhausting variation in few generations. Be-
cause (genetic codings of) computer programs result in
rugged fitness landscapes, there can be little further evo-
lution of this converged population. Here we see one of
the requirements of SAGA: a smooth fitness landscape.

Having specified what is meant by evolutionary emer-
gence, we will now explore the two types of selection
which might be used to bring evolutionary emergence
about. Packard referred to these as “extrinsic adaptation,
where evolution is governed by a specified fitness func-
tion, and intrinsic adaptation, where evolution occurs
“automatically” as a result of the dynamics of a system
caused by the evolution of many interacting subsystems”
(Packard, 1989, abstract). We will refer to them as arti-
ficial and natural selection respectively, because the first
involves the imposition of an artifice crafted for some
cause external to a system beneath it while the second
relies solely on the innate dynamics of a system.



2. Artificial selection

Within the artificial evolution field, variants of the opti-
mization paradigm have proven fruitful. Even where the
concepts of SAGA theory are dominant, practice still
holds to the use of fitness functions. But as the complex-
ity of behaviors attempted increases, flaws in the arti-
ficial selection approach are appearing. Zaera, Cliff and
Bruten’s failed attempts at evolving schooling behavior
in artificial ‘fish’ (Zaera et al., 1996) provide an account
of the difficulties faced. An extract from the abstract of
their paper still yields an excellent summary of the state
of artificial selection work within the field:

“The problem appears to be due to the difficulty
of formulating an evaluation function which cap-
tures what schooling is. We argue that formu-
lating an effective fitness evaluation function for
use in evolving controllers can be at least as dif-
ficult as hand-crafting an effective controller de-
sign. Although our paper concentrates on school-
ing, we believe that this is likely to be a general
issue, and is a serious problem which can be ex-
pected to be experienced over a variety of prob-
lem domains.”

Zaera et al. considered possible reasons for their fail-
ure. The argument which most convinced them was that
real schooling arises through complex interactions, and
that their simulations lacked sufficient complexity (Za-
era et al., 1996, section 5). They cited two promising
works: Reynolds’ evolution of coordinated group mo-
tion in ‘prey’ animats pursued by a hard-wired ‘preda-
tor’ (Reynolds, 1992), and Rucker’s ‘ecosystem’ model
(Rucker, 1993) in which Boid-like animat controllers (or
rather their parameters) were evolved. Both of these are
moves towards more intrinsic, automatic evolution.

The use of coevolutionary models is fast becoming a
dominant approach in the adaptive behavior field. This is
essentially a response to the problems encountered when
trying to use artificial selection to evolve complex behav-
iors. However, artificial selection has kept its hold so far
– most systems still use fitness functions. The reasoning
given for imposing coevolution is often that it helps in
overcoming problems arising from the use of static fitness
landscapes.

From the discussion so far, one might assume our ar-
gument to be that evolutionary emergence is not possible
in a system using artificial selection. This is not quite so,
although we do argue that artificial selection is neither
sufficient nor necessary. In the context of evolutionary
emergence, any artificial selection used constitutes just
one of the parts of a system. Artificial selection can only
select for that which it is specified to. Therefore anything
that emerges during evolution must be due to another as-
pect of selection, which must in turn be due to the innate
dynamics of the system – natural selection.

3. Natural selection

As noted in section 1., genetic codings of computer pro-
grams result in rugged fitness landscapes, making them
unsuitable for incremental evolution. However, most nat-
ural selection work has been program code evolution, fol-
lowing the initial success of ‘Tierra’ (Ray, 1991).

3.1 Natural selection of program code
Tierra is a system of self-replicating machine code pro-
grams, initialized as a single manually designed self-
replicating program. To make evolution possible, random
bit-flipping was imposed on the memory. A degree of ar-
tificial selection was imposed by the system deleting the
oldest programs in order to free memory, with an added
bias against programs that generated error conditions.

Tierra was implemented as a virtual computer, al-
lowing Ray to design a machine language with some
properties suiting it to evolution. One aspect of this lan-
guage was that it contained no numeric constants (such
as 13). Thus direct memory addressing was not possible.
Instead, the manually designed program used consecu-
tive NOP (No-OPeration) instructions which acted as
templates that could be found by certain machine code
instructions. This ‘addressing by templates’ is how the
program determined the points at which to begin and end
copying. Another aspect of the system was that compu-
tational errors were introduced at random. Such errors
could lead to genetic changes by affecting replication.

When Tierra was run, various classes of programs
evolved. ‘Parasites’ had shed almost half of their code;
they replicated by executing the copy loop from neigh-
boring organisms, which could easily be found by tem-
plate matching instructions as before. Because the par-
asites depended on their ‘hosts’, they could not displace
them and the host and parasite populations entered into
Lotka-Volterra population cycles. Ray reported that co-
evolution occurred as the hosts became immune to the
parasites, which overcame these defenses, and so on.
‘Hyper-parasite’ hosts emerged containing instructions
that caused a parasite to copy the host rather than the
parasite; this could lead to the rapid elimination of para-
sites. Ray also reported cooperation (symbiosis) in repli-
cation followed by ‘cheaters’ (social parasites) which took
advantage of the cooperators.

The above are examples of ecological adaptations.
Another class of adaptations found was “optimizations”.
For example, non-parasitic replicators almost a quarter
the length of the initial replicator were found, as were
programs with ‘unrolled’ copy loops which copied two
or three bytes per loop, reducing the overhead of loop-
ing. By adding ‘split’ and ‘join’ instructions, which al-
lowed a program to split into a multi-threaded process
and join back into a single one, the evolution of efficient
parallel-processing replicators was later achieved. While
the results of Tierra are impressive, there have been no
new reports of emergent phenomena during the last few



years. It is generally accepted that not much more will
occur unless further alterations are made to the system.

The evolvability of the code would seem to stem
largely from the template matching system. This could
account for all of the ecological adaptations reported but
would be of little use for much other than replication. To
see how this could be, consider the following pseudo-code
of the initial, manually designed program:

T1111 a=address(T1110)+1 ; b=address(T1111) ; c=a-b

T1101 allocate memory for child, length c =>a=start

call T1100 ; divide from child ;jump to T1101

T1100 push a,b,c onto stack }

T1010 memory(a)=memory(b) } copy

c-- ; if c=0 then jump to T1011 } procedure

a++ ; b++ ; jump to T1010 }

T1011 pop c,b,a off stack ; return }

T1110

This pseudo-code is based on the initial program as
listed in (Ray, 1992, appendix C). The T????s on the
left denote four-bit templates. Now, as reported in (Ray,
1992, section 3.1.1), a parasite can be obtained by sim-
ply mutating one bit of the T1100 template to produce
T1110; this would then be the same as the end tem-
plate, reducing the length to be copied (c), and the “call
T1100” statement would search outwards in memory un-
til it found a ‘host’ containing the copy procedure. Fur-
ther, a ‘host’ that is immune to such a parasite can also
be produced by a single-bit mutation in the template-
comparison 1011 in the “if c=0 then jump to T1011”
statement of the copy procedure; by mutating it to 1111,
the program will re-evaluate its address and length after
every reproduction. Thus, should a parasite try to use
this program’s copy routine, it will be copied just once
but ever after that it will be copying the host; this host is
also a ‘hyper-parasite’ as defined above. In just two tem-
plate bit-flips, we have reproduced the most impressive
ecological results of Tierra! While the actual evolution
might have taken a slightly different route, it is clear that
these phenomena are due to the flexibility of the template
matching. It is also clear that the same argument applies
to the other ecological adaptations reported.

While this demonstrates the flexibility of template
matching at the four-bit level, it also shows the ecolog-
ical results to be somewhat more trivial than we might
have first hoped. For we must hold to our previous ar-
gument that programs are not suitable for incremental
evolution; complex programs would necessarily contain
many more templates, which would have to be signifi-
cantly longer. Thus we would pass far beyond the trivial
four-bit templates that random search can operate on,
to a stage where evolution is impractical.

There is still the issue of the ‘optimization’ adap-
tations to address. Two of the results, ‘unrolled’ copy
loops and efficient replication by parallel-processing, only
needed evolution to insert (probably by the action of the

random computational errors) repetitions of neighboring
code; the local functionality was not changed and the ef-
ficiencies are from ‘more of the same’ solutions. These
examples should not alter our perception of the brittle-
ness in mutating code or inserting different instructions.
The final results to be explained are the non-parasitic
replicators almost a quarter the length of the initial repli-
cator. Comparing the shortest self-replicating program
(Ray, 1992, appendix D) with the initial program (Ray,
1992, appendix C) shows that the transition can be made
by simply deleting instructions (mostly NOPs – cutting
out the redundancy in the templates) and just six muta-
tions, three of which are unnecessary. So apart from three
mutations, this is a ‘less of the unnecessary’ solution –
certainly not sufficient to challenge our argument.

3.2 Natural selection of more suitable entities
Although the approach of most natural selection work to
date has been to evolve program code, there are two no-
table exceptions. The second (chronologically) is Chan-
non’s own work, which was conceived independently of
and initially created in ignorance of both Tierra (includ-
ing its derivatives) and the first exception: “PolyWorld”
(Yaeger, 1993). PolyWorld simulates many aspects of the
real world including energy conservation (an implicit fit-
ness function), food, movement (on a 2D plane), vision,
neural networks and learning.

PolyWorld organisms have seven pre-programmed be-
haviors: eating, mating, fighting, moving, turning, focus-
ing and lighting. An organism’s chromosome determines
its physiology (size, strength, maximum speed, green col-
oration, mutation rate, number of crossover points and
life span) and some basic characteristics of its neural net-
work, including the number of neurons devoted to vision
(in three groups: red, green and blue), the number of in-
ternal neuronal groups, a connectivity density (between
groups) matrix and Hebbian learning rates. The neural
networks are constructed stochastically. Yaeger reported
a variety of emergent behaviors, including ‘fleeing’, ‘fight-
ing back’, ‘grazing’, ‘foraging’ and ‘following’.

One criticism of PolyWorld, in the context of perpetu-
ating evolutionary emergence, is that (Hebbian) learning
may well be overwhelmingly responsible for the results.
There is little evidence of significant evolution at the ge-
netic level; the genomes had very limited control over the
small number of neural groups. It is conceivable that if
comparison PolyWorld experiments were run with ‘birth’
networks specified by random parameters, then the same
results might emerge; new organisms would either learn
such that they become adapted to the evolving environ-
ment or die, and so evolution would occur without ge-
netic change. While this is valid evolutionary emergence,
it is not sufficient for perpetuating evolutionary emer-
gence. Unless learning is evolvable or what is learnt can
be passed on, a maximal level will be reached at which
organisms are not capable of learning more.



4. A new environment – model definition

A system believed to be better suited to incremental ar-
tificial evolution by natural selection has been created.
‘Geb’ (named after the Egyptian god of the Earth) is
a two-dimensional toroidal virtual world containing au-
tonomous organisms each controlled by a neural network.
The killing of organisms is under their own control.

Geb’s world is divided into a grid of squares; 20 × 20
of them in most runs. No two individuals may occupy
the same square at any one time. This gives the organ-
isms a ‘size’ and puts a limit on their number. They are
otherwise free to move within and between squares.

Initialization: Individuals have single-bit genotypes ‘0’.
Main Loop: For each individual:

1. Update network inputs.
2. Development – one iteration.
3. Update all neural activations, including network outputs.
4. Carry out actions associated with network outputs.

4.1 The neural networks
The neural networks used in Geb are recurrent networks
of nodes as used successfully by Cliff, Harvey and Hus-
bands in their evolutionary robotics work (figure 1).

Sum

Multiply
*

Excitatory

t

Delay

Noise

PDF

-0.6 +0.6

1

V

0

Sum

Excitatory

T

U

1

1

+

+

t

Delay
Inhibitory

0 2

0.50

Inhibitory

Figure 1 Schematic of a neuron, from (Cliff et al., 1992)

All links have unit weight; no lifetime learning is used.
This is to avoid criticism that lifetime learning may be
the main factor, as levelled at PolyWorld in section 3.2.
Each node has a bit-string ‘character’ (label) attached
to it. This is used to match organisms’ inputs, outputs
and actions, and to determine the node’s development.

4.2 Organism ←→ environment interactions
There are five built-in actions available to each organ-
ism. Each is associated with network output nodes whose
characters start with a particular bit-string:

1. 01* Try to reproduce with organism in front
2. 100* Fight: Kill organism in front (if there is one)
3. 101* Turn anti-clockwise
4. 110* Turn clockwise
5. 111* Move forward (if nothing in the way)

For example, if a network output node has the char-
acter 1101001, the organism will turn clockwise by an
angle proportional to the node’s excitatory output. If an
action has more than one matching output node then the

relevant output is the sum of these nodes’ excitatory out-
puts, bounded by unity as within any node. If an action
has no matching output node, then the relevant output
is noise, at the same level as in the (other) nodes.

An organism’s input nodes have their excitatory in-
puts set to the weighted sum of ‘matching’ output nodes’
excitatory outputs from other individuals in the neigh-
borhood. If the first bit of an input node’s character is 1
then its input is from individuals to the right, otherwise
from individuals to the left. An input node ‘matches’ an
output node if the rest of its character is the same as
the start of the output node’s character. Weighting is
inversely proportional to distance between individuals.

When an organism reproduces with a mate in front
of it, the child is placed in the square beyond the mate if
that square is empty. If it is not then the child replaces
the mate unless the mate is fighting, in which case the
child is killed. Reproduction involves crossover, with the
cut point always offset by one gene (either way), and a
single gene-flip (bit-flip) mutation.

4.3 The developmental system
A context-free L-system was designed in which children’s
networks resemble aspects of their parents’. The axiom
network consists of three nodes with two excitatory links:

network input 001 7−→ 000 7−→ 01 network output

The production rules have the following form:

P → Sr,Sn ; b1, b2, b3, b4, b5, b6 where:

P Predecessor (initial bits of node’s character)
Sr Successor 1: replacement node’s character
Sn Successor 2: new node’s character
bits: link details [0=no,1=yes]:
(b1, b2) reverse types [inhibitory/excitatory] of

(input, output) links on Sn
(b3, b4) (inhibitory, excitatory) link from Sr to Sn
(b5, b6) (inhibitory, excitatory) link from Sn to Sr

For each node, the production rule with the longest
matching predecessor is applied. Thus ever more specific
rules can evolve. If a successor has no character then
that node is not created. A ‘replacement’ successor is just
the old (predecessor) node with its character changed. A
‘new’ successor inherits a copy of the old node’s input
links unless it has a link from the old node (b3 or b4). It
inherits a copy of the old node’s output links unless it
has a link to the old node (b5 or b6).

New network input nodes are (only) produced from
network input nodes and new output nodes (only) from
output nodes. The character-based method of matching
up network inputs and outputs ensures that the addition
or removal of an input/ output node at a later stage of
development or evolution will not damage the relation-
ships of previously adapted inputs and outputs.

Details of the theory behind the choice of develop-
mental system, and of the genetic decoding of production
rules, can be found in (Channon and Damper, 1998).



5. Results

When two Geb organisms (with networks developed from
more than just a couple of production rules each) re-
produce, the child’s network almost always resembles
a combination of the two parents’ networks. Examina-
tion of the networks from Geb’s population, at any time,
shows similarities between many of the networks. The
population remains nearly-converged, in small numbers
of species, throughout the evolution.

5.1 Emergent collective behavior
Once Geb has started, there is a short period while geno-
type lengths increase until capable of containing a pro-
duction rule. For the next ten to twenty thousand time
steps (in typical runs), networks resulting in very simple
strategies such as ‘do everything’ and ‘always go forwards
and kill’ dominate the population.

Figure 2 A Dominant Organism

In every run to date, the first dominant species that
emerges has been one whose individuals turn in one di-
rection while trying to fight and reproduce at the same
time. Figure 2 shows an example of such an individual.
Note the network outputs o101, o01 [x2] and o100 (turn
anti-clockwise, reproduce and fight). Note also the large
number of links necessary to pass from network inputs to
outputs, and the network input characters which match
non-action output characters of the same network (o000
[x2], o00). Individuals of this species use nearby mem-
bers of the same species, who are also turning in circles,
as sources of activation (so keeping each other going).

Although a very simple strategy, watching it in action
makes its success understandable. The individuals keep
each other moving quickly, in tight circles. Any attacking
organism would have to either get its timing exactly right
or approach in a faster spiral – both relatively advanced
strategies. These individuals also mate just before killing.
The offspring (normally) appear beyond the individual
being killed, away from the killer’s path.

Figure 3 A rebel

5.2 Naturally arising coevolution
Because of the success of this first dominant species, the
world always has enough space for other organisms to ex-
ist. Such organisms tend not to last long; just about any
movement will bring them into contact with one of the
dominant organisms, helping that species in its repro-
duction as much as themselves. Hence these organisms
share some of the network morphology of the dominant
species. However, they can make some progress: Individ-
uals have emerged that are successful at turning to face
the dominant species and holding their direction while
trying to kill and reproduce. An example of such a rebel
(from the same run as figure 2) is shown in figure 3. Note
that most rebels have many more nodes and links; this
one was picked for its clarity.

0.0 100000.0 200000.0
Time

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

N
um

be
r 

of
 o

rg
an

is
m

s

reproducing
killing (&possibly reproducing)

startup 1st dominant 2nd dominant

speciesspecies

Figure 4 Typical run (running averages)

Further, running averages of the number of organ-
isms reproducing and killing (figure 4) suggest that fur-
ther species emerge, indicating perpetuating evolution-
ary emergence. However, organisms have proved difficult
to analyze beyond the above, even at the behavioral level.
All that can currently be said is that they share charac-
teristics of the previous species but are different.



6. Conclusions

While computational emergence can arise via artificial
selection, evolutionary emergence requires natural selec-
tion (by our definitions). The logical progression or aim
is the perpetuation of evolutionary emergence via nat-
urally arising coevolution. However, this requires long-
term incremental evolution and so what we evolve and
how we evolve it must be chosen accordingly. The ini-
tial groundwork on ‘how’ has already been covered by
SAGA theory – by using low enough mutation rates that
the population evolves as nearly-converged species. As
for what to evolve, program code is too brittle. Even
the use of template matching cannot overcome that fact.
Neural networks are a clear choice because of their grace-
ful degradation (high degree of neutrality).

The implication for animat research is that it should
be leading the way, through the natural selection of neu-
ral controllers, towards the emergence of ever more com-
plex and impressive behaviors. The work presented in
this paper has started down that route, with some suc-
cess. Geb organisms satisfy the convergence criterion, be-
cause offspring resemble their parents (but are not iden-
tical). So Geb is suited to long-term incremental artificial
evolution. The behaviors identified are encouraging too,
for the increases in complexity were in ways not specified
by the design – evolutionary emergence. These are the
two cardinal quality targets for any such work.

Whether on not emergence is continuing in Geb is
hard to tell, for it soon becomes difficult to identify be-
haviors. This was a less significant problem in the evo-
lution of program code but evolved neural networks are
hard to understand and so offer little help. Constructing
systems such that behaviors will be more transparent is
likely to be the most productive way forward.

A further problem is that specifying the available ‘ac-
tions’ constrains organisms around these actions and so
limits evolution. Despite showing the important new re-
sult of evolutionary emergent behaviors (not specified
within the initial system) from a system suited to long-
term incremental evolution, all basic (inter-)actions were
as specified within the initial system and not evolvable.
At a later stage, alternatives in which the evolvable em-
bodiment of an organism gives rise to its actions will
need to be considered. Only then will we have a truly
open stage on which to watch the perpetuation of evolu-
tionary emergence.

Acknowledgements

This work is supported by an award from the United
Kingdom’s Engineering and Physical Sciences Research
Council to author ADC. It is a continuation of previ-
ous work (Channon, 1996) also supported by an award
from the EPSRC (supervisor Inman Harvey, University
of Sussex).

References

Cariani, P. (1991). Emergence and artificial life. In Artifi-
cial Life II, Santa Fe Institute Studies in the Sciences of
Complexity, Vol. X, pages 775–797, Redwood City, CA.

Channon, A. (1996). The evolutionary emergence route to
artificial intelligence. Master’s thesis, School of Cognitive
and Computing Sciences, University of Sussex. Revision
October 1996. http://www.soton.ac.uk/˜adc96r/.

Channon, A. and Damper, R. (1998). Evolving novel be-
haviors via natural selection. In Adami, C., Belew, R.,
Kitano, H., and Taylor, C., editors, Proceedings of “Arti-
ficial Life VI”, Los Angeles, June 26-29, 1998. MIT Press.
http://www.soton.ac.uk/˜adc96r/.

Cliff, D., Harvey, I., and Husbands, P. (1992). Incremental
evolution of neural network architectures for adaptive be-
haviour. Technical Report CSRP256, University of Sussex
School of Cognitive and Computing Sciences.

Harvey, I. (1992). Species adaptation genetic algorithms: A
basis for a continuing SAGA. In Varela, F. and Bourgine,
P., editors, Towards a Practice of Autonomous Systems:
Proceedings of the First European Conference on Artificial
Life, pages 346–354, Cambridge, MA. MIT Press/ Brad-
ford Books.

Harvey, I. (1997). Cognition is not computation: Evolu-
tion is not optimisation. In forthcoming Proceedings
of ICANN97. Special Session on Adaptive Autonomous
Agents at ICANN97.

Packard, N. H. (1989). Intrinsic adaptation in a simple model
for evolution. In Langton, C., editor, Artificial Life, Santa
Fe Institute Studies in the Sciences of Complexity, Vol.
VI, pages 141–155. Addison-Wesley.

Ray, T. S. (1991). An approach to the synthesis of life. In
Langton, C., Taylor, C., Farmer, J., and Rasmussen, S.,
editors, Artificial Life II, Santa Fe Institute Studies in the
Sciences of Complexity, Vol. X, pages 371–408, Redwood
City, CA. Addison-Wesley.

Ray, T. S. (1992). Evolution, ecology and optimization of
digital organisms. Technical Report 92-08-042, Santa Fe
Institute.

Reynolds, C. W. (1992). An evolved, vision-based behavioral
model of coordinated group motion. In Meyer, Roitblat,
and Wilson, editors, From Animals to Animats 2: Pro-
ceedings of the Second International Conference on Sim-
ulation of Adaptive Behavior (SAB92), pages 384–392,
Cambridge, MA. MIT Press.

Rucker, R. (1993). Artificial Life Lab. The Waite Group
Press, Corte Madera, CA.

Steels, L. (1994). The artificial life roots of artificial intelli-
gence. Artificial Life Journal, 1(1):89–125. MIT Press.

Yaeger, L. (1993). Computational genetics, physiology,
metabolism, neural systems, learning, vision, and behav-
ior or polyworld: Life in a new context. In Langton, C. G.,
editor, Artificial Life III, Santa Fe Institute Studies in the
Sciences of Complexity, Vol. XVII, pages 263–298.

Zaera, N., Cliff, D., and Bruten, J. (1996). (Not) evolving col-
lective behaviours in synthetic fish. In Maes, P., Mataric,
M., Meyer, J.-A., Pollack, J., and Wilson, S., editors, From
Animals to Animats 4: Proceedings of the Fourth Inter-
national Conference on Simulation of Adaptive Behavior
(SAB96), pages 635–644. MIT Press Bradford Books.


