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Abstract

The variability selection hypothesis predicts the adoption of
versatile behaviors and survival strategies, in response to in-
creasingly variable environments. In hominin evolution the
most apparent adaptation for versatility is the adoption of
social learning. The hypothesis that social learning will be
adopted over other learning strategies, such as individual
learning, when individuals are faced with increasingly vari-
able environments is tested here using a genetic algorithm
with steady state selection and constant population size. In-
dividuals, constituted of binary string genotypes and pheno-
types, are evaluated on their ability to match a target binary
string, nominally known as the environment, with success be-
ing measured by the Hamming distance between the pheno-
type and environment. The state of any given locus in the
environment is determined by a sine wave, the frequency of
which increases as the simulation progresses thus providing
increasing environmental variability. Populations exhibiting
combinations of genetic evolution, individual learning and
social learning are tested, with the learning rates of both in-
dividual and social learning allowed to evolve. We show that
increasingly variable environments are sufficient but not nec-
essary to provide an evolutionary advantage to those popu-
lations exhibiting the extra-genetic learning strategies, with
social learning being favored over individual learning when
populations are allowed to explore both strategies simultane-
ously. We also introduce a more biologically realistic model
that allows for population collapse, and show that here the
prior adoption of individual learning is a prerequisite for the
successful adoption of social learning in increasingly variable
environments.

Introduction
It is now widely accepted that the species Homo sapiens,
to which all modern humans belong, evolved in Africa be-
fore leaving to populate the rest of world (Tattersall, 2009).
In order to successfully populate new and challenging envi-
ronments hominins must have developed versatile and ro-
bust behaviors and survival strategies, with the most ap-
parent hominin adaptation for versatility being the adoption
of extra-genetic learning strategies such as social learning
(Tomasello, 1999). This leads us to ask what was it about
the environments in which hominins evolved that enabled

them to adapt to be so versatile and ultimately so success-
ful when moving into new and unfamiliar environments. In
response to this question numerous authors have suggested
a variety of theories and hypotheses regarding the relation-
ship between hominin evolution and the environment (Potts,
1998a). In this work we do not seek to answer the ques-
tion of how hominins became such expert social learners, we
instead test one of the most prominent theories of hominin
evolution and versatility, the Variability Selection Hypothe-
sis (Potts, 1996, 1998a,b), using an artificial life simulation.

The Variability Selection Hypothesis

The variability selection hypothesis, as proposed by Richard
Potts (Potts, 1996, 1998a,b), predicts the adoption of versa-
tile behaviors and survival strategies, in response to increas-
ingly variable environments. Over the past seven million
years there have been a number of what Potts describes as
“large disparities” in environmental conditions and a trend
toward increasing climatic variation in and around known
early hominin locations in eastern and southern Africa, such
as the Turkana and Olduvai basins (Potts, 1998a). Evi-
dence for such inter- and intra-generational changes have
been found in a variety of climatic indicators including
marine oxygen isotope levels (Potts, 1998a,b), providing
insight into temperature changes, and ocean dust records
(Potts, 1998a), providing evidence for dust plumes arising
from strong seasonal rainfalls and prevailing wind patterns.
Both of these indicators demonstrate an upward trend in en-
vironmental variability during the last seven million years
in Africa, and around the world in general. Evidence from
these, and other climatic indicators, shows that major shifts
in the African climate correlate well with important early
technological milestones and speciation events in hominin
evolutionary history (Grove, 2011). Key hominin and ho-
minid adaptations such as early bipedality and complex so-
cial behavior emerged during these periods of more pro-
nounced environmental variability (Potts, 1998b). Though
the climatic evidence for the variability selection hypothesis
is impressive, the hypothesis has had very little theoretical
work applied to it. Following the call from Potts (1998b) for



a mathematical framework to explore the variability selec-
tion hypothesis, and the work of Grove (2011) to that end,
we here test the claim that increasing environmental vari-
ability is a sufficient selection pressure to elicit the adoption
of social learning, in an artificial life simulation.

Social Learning
Social learning is not restricted to humans and their ances-
tors: it is a widely observed natural phenomenon, with many
species using a variety of social learning mechanisms such
as imitation, emulation, teaching and the use of public in-
formation to produce adaptive behaviors in dynamic and
challenging environments (Laland, 2004; Reader and Biro,
2010; Whiten and van Schaik, 2007). It has been suggested
that social learning enables animals to better track their envi-
ronment by assimilating extra-genetic information from oth-
ers during their lifetimes while avoiding potentially costly
individual learning (Boyd and Richerson, 1995).

The effects and benefits of learning have been studied
widely in simulation. According to Nolfi and Floreano
(1999) learning may be seen as having several adaptive func-
tions within an evolutionary perspective. These include al-
lowing individuals to adapt to environmental change, en-
abling evolution to use information extracted from the en-
vironment, and guiding evolution. Famously Hinton and
Nowlan (1987) demonstrated that by using individual learn-
ing, populations are able to solve “needle in a haystack”
problems due to learning guiding evolutionary search. Best
(1999) extended the work of Hinton and Nowlan (1987) by
demonstrating that, given the same “needle in a haystack”
problem, social learning outperforms individual learning.
Further work using simulated robots (Acerbi and Nolfi,
2007), animats (Borg et al., 2011), autonomous robots
(Acerbi et al., 2007), ungrounded neural networks (Curran
and O’Riordan, 2007), and binary strings (Jones and Black-
well, 2011) has contributed further to our understanding of
the evolutionary advantages provided by social learning.

Social Learning in Increasingly Variable
Environments
Numerous models and simulations have demonstrated the
adaptive advantages, and highlighted potential failings, of
learning strategies in environments exhibiting some level of
consistent variation (Borg et al., 2011; Boyd and Richer-
son, 1983, 1995; Grove, 2011; Jones and Blackwell, 2011;
Whitehead and Richerson, 2009). In this work we test the
hypothesis that increasing, rather than simply consistent, en-
vironmental variability is sufficient to elicit the adoption of
social learning. To test this hypothesis populations of indi-
viduals, constituted of binary string genotypes and pheno-
types, are evaluated on their ability to match a target binary
string, nominally known as the environment, with success
measured by the Hamming distance between the phenotype
and environment. Three classes of environment are used.

1. Static environments in which an environment’s target
string remains unchanged.

2. Consistently variable environments in which each lo-
cus of an environment’s target string switches on or off at
regular, frequent, intervals.

3. Increasingly variable environments in which the fre-
quency of change increases over the period of evolution.

For each class of environment, populations exhibiting
combinations of genetic evolution, individual learning and
social learning are evaluated, with the learning rates of both
individual and social learning allowed to evolve. Mean pop-
ulation fitness is recorded for each combination of environ-
ment and learning strategy, with data also collected on the
evolved rates of social and individual learning and the re-
productive fitness of individuals exhibiting different learning
rates when both extra-genetic learning strategies are com-
bined.

Our expectations were as follows.
1. Social and individual learning strategies, both sepa-

rately and in combination, will outperform genetic evolution
on all environments.

2. When evolved simultaneously social learning will be
favored over individual learning, with individuals exhibiting
higher levels of social learning having a higher reproductive
fitness, thus showing that social learning is adopted over in-
dividual learning in increasing and consistently variable en-
vironments.

The Model
The model used is a genetic algorithm with steady state se-
lection, in which individuals, constituted of binary string
genotypes and phenotypes of length L, are assessed on their
ability to match a binary target string or, as we shall refer to
it here, an environment denoted as E (also of length L). A
phenotype is assessed by measuring the Hamming distance
between it and the environment. A phenotype is initially a
copy of the genotype but can acquire information through
evolution and learning, which is discussed in more detail
later. This may be achieved by one of four strategies.

1. Genetic Evolution - at reproduction random mutations oc-
cur with probability pmut at each locus.

2. Individual Learning - at each epoch (iteration of the
steady state genetic algorithm) every individual flips each
of the bits in its phenotype with probability pind.

3. Social Learning - at each epoch every individual copies
each locus from a random other individual’s phenotype
with probability psoc.

4. Individual and Social Learning (Combined) - at each
epoch every individual engages in either individual learn-
ing or social learning, with equal probability, at each locus
in the phenotype.



The learning rate (per locus probability of flipping or copy-
ing) is allowed to evolve independently for each individual.
That is to say that a population wide learning rate is not set.
Both pind and psoc are floating point values bounded within
the range [0, 1].

Variable Environments
Populations are tested on one of the three environmental se-
tups introduced earlier, two of which exhibit some level of
variability. Variability is dictated by a sine wave. At initial-
ization each locus l in the environment is assigned a random
value f, which is used to determine the binary value of the
environmental locus at each epoch (1).

El = sin((f l × epoch)× (π/180))
{

<0→0
>0→1 (1)

The range of values f may be initially set to is determined
by which environment the population is being tested on:

1. No Variability (static): f = 0

2. Consistent Variability: fεN(1.8, 1.8
2

2)

3. Increasing Variability: fεN(0.018, 0.018
2

2)

Values of f ≈ 1.8 equate to approximately one change per
100 epochs, with 100 epochs being considered to be one
generation of the algorithm (where L = 100). A value of
f ≈ 0.018 equates to approximately one change per 10000
epochs, or one hundred generations. One change per gener-
ation is referred to as high frequency variability, one change
per ten generations as medium frequency, and one change
per one hundred generations as low frequency. As each en-
vironmental locus has a unique initial value of f, the sine
wave dictating the value at each locus will be different, thus
avoiding uniform environmental change.

For increasing variability tests the f values increase over
time. The f value for any environmental locus (El) during
increasing tests is determined by the initial f value at that
locus (f0), the maximum f value (fmax = 1.8), the current
epoch and the number of epochs the evaluation is permitted
to run for (2).

fepoch = f0 + (fmax − f0)× (
epoch

epochmax
) (2)

Evolution and Learning
Each test is populated by N individuals, each constituted of
the following:

• gε{0, 1}L- genotype, an L-bit string

• hε{0, 1}L- phenotype, an L-bit string initially equal to g
but subject to learning. The individual’s fitness is L minus
the Hamming distance between h and E.

• pindε[0, 1] - individual learning rate, set initially to 0.
In populations allowed to learn in this manner pind may
evolve via mutation.

• psocε[0, 1] - social learning rate, set initially to 0. In pop-
ulations allowed to learn in this manner psoc may evolve
via mutation.

These properties are broadly consistent with the properties
used by Jones and Blackwell (2011). However, unlike Jones
and Blackwell (2011) the learning rates are not normalized
to sum to unity, instead each rate may evolve to a maximum
value of 1.

At each epoch two individuals are selected at random
from the population for tournament selection. Reproduction
then takes place between the tournament winning individ-
ual (the one with the higher fitness) and a random individual
from the population, the progeny of this reproduction replac-
ing the tournament loser. Reproduction consists of both re-
combination and mutation. Recombination is by way of sin-
gle point crossover, where a random position lε[0, L − 1] is
selected. Bits 0 to l being taken from one of the parents and
bits l + 1 to L− 1 from the other, with the order of the par-
ents determined at random at each reproduction. Mutation
occurs at each locus in the child’s genotype, with probability
pmut = 1/L of the bit at that locus being flipped. Following
reproduction g is copied without error to h which from this
point in the child individual’s lifetime is used for fitness eval-
uation and learning. In learning populations parental values
of pind and psoc are also inherited (depending on the learn-
ing strategy implemented for the population). The child in-
herits one of its parents’ learning rates at random, with the
learning rate then being mutated by the addition of Gaussian
random noise (mean 0, standard deviation 0.01).

Learning comes in two distinct strategies: individual and
social. At each epoch all individuals from a learning pop-
ulation are afforded the opportunity to learn. Individual
learning takes the same form as mutation at reproduction,
with each locus in h bit-flipping with probability pind. So-
cial learning on the other hand is a little more involved:
for each locus in h there is a probability psoc of copy-
ing the tournament winning individual’s equivalent locus.
Copying the tournament winning individual in social learn-
ing strategies may be seen as akin to the “copy-successful-
individuals” strategy outlined by Laland (2004) and imple-
mented (though in a slightly different manner) by Jones and
Blackwell (2011). In those populations exhibiting both indi-
vidual and social learning in combination, which of the two
learning strategies to use is chosen at random (50:50) for
each locus of each individual, and applied with the appro-
priate learning rate. Individuals are also afforded the oppor-
tunity to unlearn any learned information. Each individual
maintains a copy of their phenotype from before learning; if
after learning their fitness is less than it was during the last
epoch, their previous phenotype is restored.



Experimentation and Results
Experimentation was initially conducted on the static, con-
sistently variable and increasingly variable environments.
Forty initially random populations of size N = 100 were
tested for each environmental setup: ten populations per
learning strategy. Each environment, of size L = 100, was
initially identical in its binary composition, as was the ran-
dom number seed from which the initial f values were de-
rived. Each population was run for 100000 epochs (1000
generations), with the population being sampled every 100th
epoch (once per generation). The data presented here takes
the mean performance of each of the ten populations per
learning strategy at every generation.

A set of further tests were also conducted to assess in
which conditions of environmental variability populations
were likely to collapse. These tests were conducted in two
differing setups. In both setups N was maintained at 100 but
before standard tournament selection took place all individu-
als with a fitness less than L/2 were killed, these individuals
being deemed to be unfit. If at this point the new population
size N ′ ≤ N × 0.1 the population is considered to have col-
lapsed and evolution is terminated. If the population does
not collapse, tournament selection takes place to replace one
surviving individual, and the population is then re-populated
to N = 100 by the progeny of randomly selected other sur-
viving individuals. The first test setup was conducted for a
maximum of 100000 epochs, with populations reaching this
epoch being considered as surviving populations.

The second population collapse test setup differs from the
first in three distinct ways: tests were simulated for 200000
epochs; only populations exhibiting the individual and social
learning strategies combined were tested; and social learn-
ing was prohibited from being used or evolving for the first
half of each experiment.

Static Environments
As can be seen from figure 1(a), under static conditions both
social learning and individual and social learning combined
perform much better than genetic evolution and individual
learning. These results are broadly consistent with those of
Jones and Blackwell (2011) who also found social explo-
rations to be advantageous and individual learning to sub-
optimal in static environments. However, unlike Jones and
Blackwell (2011), in these tests individual learning does not
outperform no-learning (genetic evolution alone) over the
entire simulation. This result is a little surprising given Hin-
ton and Nowlan (1987), which demonstrates that individual
learning should be able to better guide evolution than ran-
dom mutation alone. It also seems that individual learning
is not highly expressed when used in isolation. Figure 4
shows that under unchanging environmental conditions indi-
vidual learning does not achieve a maximum pind of above
0.2, this value being lower than in all other environmental
conditions and significantly lower than psoc, which in static
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Figure 1: Static Environment Tests: (a) Mean fitness of each
learning strategy, (b) Mean fitness of individual and social
learning with the evolved learning rates, (c) Reproductive
fitness of combined learning rates.

environments achieves a value in excess of 0.7. Individ-
ual learning is also marginalized when expressed in com-
bination with social learning. Figure 1(b) shows that when
evolved together social learning outstrips individual learning
by some distance, with individual learning becoming almost
unused after an initial spike before 1000 epochs. Interest-
ingly, for static environments the maximum value of psoc

achieved is larger when individual and social learning are
found together, than when social learning is evolved in isola-



tion, implying that social learning requires individual learn-
ing to be fully expressed. As hypothesized social learning
is adopted over individual learning, this adoption also being
reflected by the reproductive fitness of individuals exhibit-
ing the combined learning strategy as shown in figure 1(c).
Individuals exhibiting intermediate values for psoc and low
values (below 0.1) of pind are shown to be more reproduc-
tively fit by contributing to a larger number of reproductions
over the evaluation period.

Consistently Variable Environments
As shown in figure 2(a), under consistently variable condi-
tions, where f is maintained at 1.8, the extra-genetic learn-
ing strategies all outperform no-learning (genetic evolution
alone). In high variability environments non-learners find
it difficult to track changes in the environment using muta-
tion and recombination alone, causing populations of non-
learners to average out at a fitness of L/2: no better than
random. Of the extra-genetic learning strategies the com-
bined strategy far outperforms individual and social learning
alone. Individual learning when exhibited in isolation tends
to find a stable value very quickly, but is unable to improve
upon it. Social learning on the other hand rapidly (though
also rather noisily) finds highly optimal solutions. However,
the ever increasing reliance on social learning, as demon-
strated by a maximum learning rate of above 0.9 (see figure
4), causes social learners’ fitness to decrease to a value equal
to that of individual learners, suggesting that overly con-
formist learning strategies are no better than trial-and-error
personal innovations at tracking high levels of environmen-
tal change. By combining individual and social learning the
negative aspects of both strategies in isolation seem to van-
ish: fitness does not stabilize at a sub-optimal value early on
and fitness does not decrease over time. This suggests that
the conformist bias imposed by social learning is in some
way tempered by non-social innovation. However, as we
can see in figure 1(b and c) social learning is largely adopted
over individual learning, with pind being sidelined to values
well below 0.1 and highly reproductive individuals exhibit-
ing high levels of social learning and low levels of individual
learning. The initial spike in individual learning seen early
in the combined strategy, while psoc is also low, may in-
dicate that the vast majority of innovation is introduced into
the population before it becomes overly conformist. It is also
interesting to note that the spike in pind correlates well with
the noisiest fitness period. Once enough innovation is intro-
duced into the population innovation appears to be sidelined,
although maintained at a low level, and individuals become
increasingly reliant on social learning.

Environments of Increasing Variability
Unlike in consistently noisy environments, all populations
exhibiting extra-genetic learning strategies find it difficult to
maintain high levels of fitness when confronted with increas-
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Figure 2: Consistently Variable Environment Tests: a) Mean
fitness of each learning strategy, b) Mean fitness of individ-
ual and social learning with the evolved learning rates, c)
Reproductive fitness of combined learning rates.

ing levels of variability (see figure 3(a)). As the environ-
ment becomes more noisy individual learning rates begin to
increase, possibly to reintroduce an element of personal in-
novation to the population, which has become stagnant due
to the high levels of conformist learning imposed by large
quantities of social learning during times of minimal vari-
ability. The reproductive fitness of individuals, as seen in
figure 3(c), is also interesting, as reproductively successful
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Figure 3: Increasingly Variable Environment Tests: a) Mean
fitness of each learning strategy, b) Mean fitness of individ-
ual and social learning with the evolved learning rates, c)
Reproductive fitness of combined learning rates.

individuals tend to exhibited high levels of social learning
and increased levels of individual learning, when compared
to the reproductive fitnesses of individuals in consistently
variable or static environments. It is also interesting to note
the comparisons between maximum learning rates for so-
cial and individual learning on increasingly variable envi-
ronments (see figure4): despite individual learning being
a necessary component of the combined strategy, it is not

exhibited to as high a degree as when found alone; con-
versely social learning is always exhibited at higher levels
when accompanied by individual learning. This again sug-
gests that, while social learning is adopted over individual
learning, individual learning is necessary for social learning
to be used to greatest effect (Acerbi and Nolfi, 2007; Acerbi
et al., 2007). Evidence from all stages of environmental
variability seem to tell a similar story, though to different
degrees: social learning is widely adopted over individual
learning when found together, with all extra-genetic learning
strategies performing better than random on all tests. Extra-
genetic learning strategies are also exhibited at higher levels
in noisy environments than in static environments. The ev-
idence presented does suggest that increasing variability is
sufficient to cause the adoption of versatile survival strate-
gies such as learning, with social learning being the learning
strategy of choice.

0 0.2 0.4 0.6 0.8 1 

Social Learning (alone) 

Individual Learning (alone) 

Social Learning  
(with Individual Individual) 

Individual Learning  
(with Social Learning) 

Increasingly Variable Consistently Variable Static 

Figure 4: Maximum learning rates exhibited over all envi-
ronmental test cases for all learning strategies.

Population Collapse in Variable Environments
(Consistent and Increasing)
One of the pitfalls of the kind of genetic algorithm used so
far is that even when populations exhibit low levels of evo-
lutionary proficiency, they still survive; of course this is not
the case in nature. To explore whether or not the learning
strategies implemented in this model are really robust we
have also implemented a set of tests where populations may
become extinct. The first tests follow the test setups above,
with populations exhibiting different learning strategies be-
ing tested on environments with consistent and increasing
variability. Populations falling below N × 0.1 individuals
are considered as being collapsed.

Consistently variable environments were produced with
four levels of variability;

1. No variability (static): f = 0

2. Low variability: fεN(0.018, 0.018
2

2)



3. Medium variability: fεN(0.18, 0.18
2

2)

4. High variability: fεN(1.8, 1.8
2

2)

Learning Strategy Static Low Medium High
Genetic 100% 100% 100% 0%

Individual 100% 100% 100% 50%
Social 100% 100% 90% 0%

Individual & Social 100% 100% 100% 0%

Table 1: Consistently Variable Environments: % of popula-
tions surviving.

The percentages of populations surviving until the end of
evaluation are reported in table1. As may be expected, pop-
ulations are unable to survive highly variable environments
as the increased chance of death makes it all but impossi-
ble to re-adapt to new environments. However, individual
learning does seem to be more robust than all other strate-
gies, achieving a 50% survival rate on high frequency envi-
ronments. It may be the case that higher rates of individual
learning, though risky, are better able to deal with sudden en-
vironmental shifts. Social learning on the other hand begins
to struggle in environments exhibiting medium amounts of
variability. As with our earlier tests it may simply be the case
that conformism spreads through the population, increasing
the likelihood of population collapse. Combining individual
and social learning alleviates the problem to some extent.

Increasingly variable environments were produced at
three initial levels of variability: static, low and medium.
In these environments variability increase throughout evolu-
tion, to a level of high variability.

Learning Strategy Static Low Medium
Genetic 0% 0% 0%

Individual 100% 100% 100%
Social 0% 0% 0%

Individual & Social 0% 0% 0%

Table 2: Increasingly Variable Environments: % of popula-
tions surviving.

Unlike in consistently variable environments all learning
strategies, excluding individual learning alone, result in pop-
ulations that are unable to survive in any increasingly vari-
able environment (see table 2). It seems social learning com-
pletely undermines individual learning when combined, per-
haps owing to over-conformism in times of lower variability
stagnating the population’s pool of knowledge to the point
that the increase in individual learning, usually seen later in
increasingly variable environments (see figure 3(b)) is insuf-
ficient to redeem the population’s fortunes.

As indicated by tables 1 and 2, individual learning is the
only learning strategy robust enough deal with increasing

and high levels of environmental variability. However, in
early tests the combined strategy of both individual and so-
cial learning was seen to be adaptive in all environmental
settings. To investigate whether individual learning is nec-
essary for the successful introduction of social learning we
implemented a final set of tests. In these, individual learning
was allowed to evolve in isolation for 100000 epochs before
the introduction of social learning alongside it for a further
100000 epochs. These tests provide a greater challenge for
populations as they are required to survive for twice the eval-
uation period previously tested. However, this increase in
evaluation time does reduce the rate at which environmental
variability increases during increasing-variability tests.

As table 3 shows, the evolution of individual learning
prior to social learning does provide some benefits in in-
creasingly variable environments, but only when beginning
from medium levels of variability (f = N(0.18, 0.18

2

2). It
may be that noisier environments provide a greater selec-
tion pressure for high levels of innovation, which in turn in-
troduces a larger pool of knowledge for social learning to
access; or that the lower rate of increase in variability is sig-
nificant. Further tests will need to be conducted to analyze
the precise learning rates, reproductive fitnesses and death
rates exhibited in these “goldilocks” conditions.

Variability Static Low Medium High
Consistent 100% 100% 100% 0%
Increasing 0% 0% 100% N/A

Table 3: Individual and Social Learning: % of populations
surviving when individual learning is allowed to evolve be-
fore the introduction of social learning.

Conclusions and Future Work
Reader and Laland (2002) have demonstrated that personal
innovations (individual learning) and social learning co-vary
across species. The above results go some way to explain-
ing why social learning was adopted most strongly when
combined with individual learning. It seems that individ-
ual learning is necessary for effective social learning. This
may also be a mechanism of avoiding population collapse.
Whilst social learning alone can maintain adaptive knowl-
edge in the population, over-reliance on it can just as easily
reinforce sub-optimal or incorrect knowledge when the envi-
ronment is highly stochastic, potentially causing the popula-
tion to collapse (Whitehead and Richerson, 2009). By main-
taining a level of personal innovation alongside social learn-
ing, populations can maintain non-conformist local search
whilst ensuring that useful innovations are transmitted over
generations (Acerbi and Nolfi, 2007). However, in environ-
ments of lower variability conformist social learning ensures
a high level of individual fitness. Individual learning on



the other hand may impose unnecessary local search which
could cause individuals to lose useful adaptations if high lev-
els of individual learning are maintained. The data presented
here suggests that when environments are in minimally vari-
able states individual learning plays a smaller role than it
does in more variable environments. It is also found to be
the case that mortality is greatly increased in environments
of high or increasing variability when social learning is ex-
hibited unless individual innovation is allowed to develop in
isolation (Acerbi et al., 2007).

Our initial hypothesis (developed in order to test Potts’s
variability selection hypothesis), that when individual and
social learning rates are evolved simultaneously, both in-
creasing and consistently variable environments are suffi-
cient for the adoption of social learning over individual
learning, holds true here, though with two main caveats: in-
dividual learning is required for successful social learning,
and population collapse may only be avoided when individ-
ual learning is allowed to pre-evolve in already noisy envi-
ronments before the introduction of social learning. Both
of these caveats require further investigation in steady state
genetic algorithms, neural networks (Curran and O’Riordan,
2007) and grounded animat simulations (Borg et al., 2011).

The way noise is implemented also requires further inves-
tigation. Sine waves, though used elsewhere to produce en-
vironmental variation (Grove, 2011), are not the only pattern
of environmental variability found in nature. Further tests
could include empirically derived data sets (Grove, 2011) or
red noise (Whitehead and Richerson, 2009).
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