
Evolving Robust, Deliberate Motion Planning With a Shallow Convolutional
Neural Network

Ben Jolley and Alastair Channon

School of Computing and Mathematics
Keele University
ST5 5BG, UK

{b.p.jolley, a.d.channon}@keele.ac.uk

Abstract

Deep Convolutional Neural Networks (ConvNets) have seen
great success on machine learning tasks in recent years but
have shown difficulty with tasks that require long-term delib-
erative planning. Whereas, purpose-built hybrid network ar-
chitectures have been able to solve increasingly challenging
deliberate tasks in two-dimensional and three-dimensional ar-
tificial worlds. Starting from a purpose-built network and
transitioning to a general architecture, like a deep ConvNet,
may retain long-term deliberative planning while allowing
greater flexibility in the task domain. This paper employs
a standard genetic algorithm (GA) to train the weights of a
ConvNet with a recurrent 3x3 filter to produce robust and
deliberative motion planning. This technique resulted in an
average of 98.97% completion over 10,000 runs in the most
difficult deliberate task. This demonstrates that a shallow
ConvNet with recurrent connections is capable of producing
deliberate and robust motion planning. Further, the evolved
ConvNet exhibits superior motion planning in the most chal-
lenging environments, when compared to the previous task-
specific motion-planning network.

Introduction
In recent years, the success of deep convolutional networks
(ConvNets) on machine learning tasks demonstrates that
advanced behaviours are obtainable without careful engi-
neering and considerable domain expertise. This success
is more relevant to the ALife community than ever due to
the emergence of Deep Neuroevolution (Such et al. 2017).
Deep Neuroevolution is able to trains ConvNets with a
simple GA and can rival the performance of state-of-the-
art policy gradient algorithms such as Deep Q Networks
(DQN) (Mnih et al. 2015) and Asynchronous Advantage
Actor-Critic (A3C) (Mnih et al. 2016). The ability of deep
networks to generalise is demonstrated clearly by the re-
sults achieved on the Arcade Learning Environment (ALE)
(Bellemare et al. 2013). ALE provides various Atari-2600
games to benchmark the performance of general game play-
ers. However, ALE highlights a weakness of ConvNets
when an environment requires deliberate actions. Environ-
ments requiring reactive control can perform above human
level but those with sparse rewards and reliance on long term

deliberative planning fall below human performance. As
seen in Pitfall and Montezumas Revenge.

Reactive and deliberative behaviours in combination have
shown to be achievable with hybrid networks and have
been demonstrated on Atari-like 2D environments (Robin-
son et al. 2007, Borg et al. 2011, Borg and Channon 2017).
The behaviours demonstrated on this architecture has shown
to be adaptable to more complex 3D environments (Stanton
and Channon 2015); even adapting to tasks outside of the
intended use (Stanton and Channon 2016). However, these
architectures are purpose-built and limited to specific envi-
ronments whereas ConvNets are able to adapt to many sce-
narios. Therefore, this work aims to take the hybrid archi-
tecture and begin to generalise the network while retaining
the ability for long-term deliberate planning. Core to the hy-
brid architecture is a static sub-network for motion planning
in dynamic environments. This greatly reduces evolution’s
cost and exploration while limiting its functionality. Replac-
ing this network would allow evolution to produce novel be-
haviours suited to the task domain.

Work in Jolley and Channon (2018) attempted to replace
the static motion planning sub-network using HyperNEAT,
with some success. However, this paper aims to achieve
greater functionality and extend evolution’s role. First,
this work will incorporate avoidance in motion planning,
avoided in previous work due to its complexity. Next, the
static network will be replaced by a ConvNet with recurrent
connections. This form of motion planning requires contex-
tual information about the entire environment. In a neural
representation, it becomes too computationally intensive for
each node in the environment to have an evolvable relation-
ship with every other node. Therefore, methods are needed
to restrict the relationship between network size and evo-
lutionary complexity. Due to ConvNets’ local connections,
the size of a layer can increase without the need for a larger
genome and greater complexity. Then, with a novel use of
recurrent links, information from local areas can iteratively
spread across the environment. Finally, by utilising a simple
GA, all network weights are evolved simultaneously. This is
inherently a more difficult task than previously attempted.



Resource

River

Stone

Trap

Animat

Figure 1: An RC World environment (left) with the corresponding activity landscape (right) produced via the shunting model.

Background
River Crossing Task
The River Crossing (RC) Task was devised in Robinson
et al. (2007) to demonstrate high-level deliberative and re-
active behaviours produced by a hybrid neural architecture.
The architecture consists of a Shunting Model (SM) with
static weights and a Decision Network (DN) with evolvable
weights. The goal of an animat is to locate the resource on
each RC world within 100 time-steps, while avoiding harm-
ful objects. Once the resource is obtained, the animat pro-
ceeds to the next RC World. Each world increases in com-
plexity via an expanding river obstruction between animat
and resource. Animats must learn to build bridges to cross
the river.

RC World RC worlds are constructed in a 20x20 bounded
grid in which each cell can contain zero or one of each of
four object types: stone, trap, water and resource; a cell con-
taining none of these is deemed to contain grass. Traversing
over a trap or water kills an animat; stones can be picked
up and put down. Complexity is enforced by water placed
across the world, creating a river obstacle. When placed on
water, stones can create a bridge. Fitness is an integer from
0 to 4, determined by the number of RC worlds in which the
animat reaches the resource. Animats are evaluated first of a
world with river width 0 (no river), then 1, 2 and 3, stopping
at first failure.

The Decision Network The DN is a standard feed-
forward neural network that dictates how desirable or unde-
sirable an object type is, and whether an animat should pick
up or put down a stone. Topology consists of six inputs, four
hidden nodes and five outputs. There are five binary inputs
representing the presence or absence of each object type (in-
cluding one for grass) and a sixth representing whether or
not the animat is carrying a stone. There are four outputs

corresponding to the desirability of each object type and a
fifth used to determine whether the animat should pick up
(positive output) or put down (negative output) a stone. The
four desirability neurons use a hyperbolic tangent activation
function and then values below, within and above the range
[-0.3, 0.3] are converted to -1, 0 and 1 respectively. These
output values are then multiplied by 15 to give iota values,
which indicate the desirability of the object types in the en-
vironment.

The Shunting Model The SM is a topographically
ordered neural network that produces a short trajectory
between two positions in a dynamic environment without a
learning process. First used in Meng and Yang (1998), the
SM was applied to real-time robotics to solve maze-type
problems by mapping the physical environment to positional
neurons. Activity from desirable states propagates through
the network to create an activity landscape. Peaks form at
objectives and troughs at states to avoid. In the RC task the
state attributes are provided via the DN and diffused via the
following equation:

xnew
i = min

1

8

∑
j∈Ni

[xj ]
+ + Ii, maxi

 (1)

where xnew
i is the activation of neuron i; Ii is the external

input determined by the iota value of the object present in
cell i; Ni is the receptive field of i; maxi is the maximum
iota value (15). Equation 1 is iterated fifty times to allow
activity to propagate and stabilise across the 20x20 array
of SM neurons, as shown in figure 1. Previous RC imple-
mentations of the SM used the Additive Model, but in ex-
tended work the implementation has changed for simplicity
and clarity while maintaining the same behaviour (Stanton
and Channon 2015).



ConvNets
ConvNets were originally proposed in LeCun et al. (1990)
for handwritten digit recognition. They proved successful
also in speech recognition (LeCun and Bengio 1995), object
detection in natural images (Vaillant et al. 1994) and face
recognition (Lawrence et al. 1997). The basis of the mod-
ern ConvNet architecture was introduced in LeCun et al.
(1998) with LeNet-5. LeNet-5’s success comes from de-
riving higher-level features from identified lower-level ones;
this is achieved via local connections, shared weights, pool-
ing and the use of layers. ConvNets can consist of convo-
lution layers, pooling layers, non-linearity and a fully con-
nected layer.

A filter iterates across the input vertices where convolu-
tion applies to extract spatial features. Each filter cell has an
evolvable weight that is used during convolution. Depend-
ing on the task, many filters can be used to focus on key
features, such as colours in an image. Outputs are then ap-
plied with a non-linear activation function. The dimension
of the representation reduces by down-sampling the inputs
in pooling layers. This creates an invariance to small shifts
and distortions. The layer before the fully connected layer
is flattened and each neuron interconnected. For example, in
a classification task, the fully connected section will deter-
mine which features most correlate to a particular class.

Despite these initial successes, ConvNets’ popularity
would come to fruition with advances made in core comput-
ing systems. The use of GPUs allowed AlexNet (Krizhevsky
et al. 2012) to train deeper and wider CovNets. In the chal-
lenging ImageNet competition, AlexNet achieved state of
the art results. Various other advances were introduced in
this architecture, such as dropout to reduce overfitting and
ReLU to improve training times. Since then, ConvNets have
been structured in many different ways. The work in Mnih
et al. (2015) omitted the pooling layers to retain spatial infor-
mation. Residual Networks (ResNets) have employed more
than 100 layers to improve performance on visual recogni-
tion tasks (He et al. 2016). GoogLeNet’s Inception module
concatenates multiple filters, at varying sizes, on the same
layer into a single output vector to abstract features from dif-
ferent scales (Szegedy et al. 2014). DenseNet connects each
layer to every other layer in a feed-forward fashion which
strengthens feature propagation (Iandola et al. 2014).

Experimental Setup
In these experiments, the functionality of the traditional
shunting equation was replaced with a shallow ConvNet ar-
chitecture with recurrent connections. Three sets of exper-
iments were carried out for 100 runs. The first evolved
the DN while the SM remained static. Next, the SM was
evolved in combination with a static DN; the static DN was
pre-evolved to achieve the highest fitness using the origi-
nal architecture. Finally, the entire network architecture was
evolved at once.

RC Task

The RC task remains similar to that of Robinson et al.
(2007), with alterations introduced in Jolley and Channon
(2018). Fitness is aggregated over 10 RC task attempts.
Previous work has shown this to improve the robustness of
solutions. To assess general performance, successful ani-
mats are subject to the Robustness Test. This simulates ani-
mats through 104 static RC world configurations with a river
width of 3, the most difficult type of world this task offers.

Activity Landscape

ConvNet

Decision Network

RC World

1 0 0 1 0 0 -1 0 0 0 0 0 0 0 -1-1-1-1-10

0 0 1 0 -1 1 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1-1-1 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 -1-1-1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1-1-1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1-1-1 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 1 -1-1-1 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 -1-1-1 0 -10

Filter

s t w r c

g r s w t c

Figure 2: Neural architecture. Attributes at the agent’s
position (g=grass, r=resource, s=stone, w=water, t=trap,
c=carrying) determine inputs to the Decision Network. At-
tributes of the RC World are converted to iota values via the
Decision Network outputs. The iota values are feed to the
ConvNet layer at the corresponding position of the attribute
in the RC World. A 3x3 filter is passed across the layer to
perform recurrent convolution, synchronously updating ac-
tivities in the same layer. The network is activated a fixed
number of times. The activity landscape is a visual represen-
tation of the output after completion. Links in red represent
evolvable weights.



Network Architecture
The architecture introduced in this paper replaces the shunt-
ing model from Robinson et al. (2007) with a single layer
ConvNet with recurrent connections, see figure 2. The Con-
vNet uses a 3x3 filter with a stride of 1 and padding of 1,
to synchronously update activities in the same layer. After
activation rectifier non-linearity (ReLU) applies to outputs.
ReLU typically learns much faster in networks with many
layers, shown in Glorot et al. (2011), which is not relevant
due to our networks size. However for this experiment, the
ReLU has the added benefit of replicating the shunting equa-
tion’s ability to propagate only positive values. The filter
takes as input cells’ previous activation values added to DN
outputs according to cell content (current object). This al-
lows the propagation of values across the layer after multiple
activations. The activity landscape can only function if the
ConvNet output resembles the same dimensions as the input.
Thus, the lack of pooling and use of padding is necessary in
order for the output to remain the same spatial size.

For each world time-step, activity update in the ConvNet
is iterated a fixed number of times. The RC world size in-
structs this number; for this work the value is 50. The Con-
vNet output represents the activity landscape. In the land-
scape, an animat follows the activation of its highest sur-
rounding neighbour. The genotype sizes for the DN, SM and
full network configurations are 44, 9 and 53, respectively.

Genetic Algorithm
This work uses an extremely simple GA, as a simple GA
has been shown to achieve high quality results when evolv-
ing deep ConvNets for reinforcement learning tasks (Such
et al. 2017). Our chosen GA evolves a population of 100
individuals, represented as neural network weights. In each
generation, each individual’s performance on the RC task is
assigned a fitness value. Elitism is applied, storing 10% of
the fittest individuals for the next generation. The remain-
ing population is generated via single-point crossover and
mutation, with parents selected at random from the previous
generation. Each offsprings genome has a 25% chance of
mutating a single parameter with an additive Gaussian noise
value. Once the highest fitness has been achieved evolution
ceases. If an animat does not achieve the highest fitnesss
within the number of generations set, the attempt is consid-
ered a failure.

Results
100 runs for 104 generations are performed with each strat-
egy on the RC task. During training, if animats are unable
to complete all 10 RC tasks to the most difficult behaviour
they fail the run.

• s-SM refers to the static-SM, where the DN evolves and
the SM follows the shunting equation.

• e-SM refers to the evolvable-SM, where the DN is pre-
evolved and the SM evolves.

• FN refers to Full Network, where both the DN and SM
evolve simultaneously.

Set Best Worst Mean Stdev Success
s-SM 1 138 43.58 30.73 100%
e-SM 43 4146 845.59 845.11 100%
FN 178 6137 673.61 1268.4 44%

Table 1: Best, worst and mean number of generations re-
quired to complete the task. Completion is defined as any
animat completing the RC task at the hardest difficulty 10
times.

Table 1 demonstrates that every strategy is able to com-
plete the RC task to the highest level of difficulty. As previ-
ously established, the s-SM is able to evolve to the highest
standard of reactive and deliberative behaviours in all runs,
which is also true for e-SM. Both e-SM and s-SM achieve
100% success in every run. However, all evolvable strategies
on average take more generations to find a successful solu-
tion. Although FN is able to successfully train animats, these
examples were a minority; FN also produced the largest de-
viation in the number of generations required.

Animats achieving completion at each run were evaluated
in the Robustness Test with river width 3. This simulates an-
imats through 104 static RC world configurations. Animat’s
performance on this test represents their ability to adapt to
general environments. Figure 3 presents these results as well
as those from the HyperNEAT architecture used in Jolley
and Channon (2018). HyperNEAT and e-SM both utilise
the same pre-evolved DN for direct comparison.

All strategies are statistically distinguishable from each
other in their general completion ratings, established via a
two-sample t-test with p values less than 0.05. s-SM still
provides the most consistent results. e-SM provides compa-
rable results with only a slight increase in mid-spread and
a slightly lower average of 98.97% vs the 99.96% of s-SM.
FN has the greatest deviation range but with a high comple-
tion rate of 96.72%. In the same task e-SM exhibits greater
performance compared to HyperNEAT.

Another appealing aspect of the shunting equation is the
efficiency of animats’ movement, wherein animats move to
the closest desirable object. As established in Jolley and
Channon (2018), without efficient movement the actions of
animats can seem undeliberate and unintelligent. So, the
new architecture has to be evaluated in this area. The age
of an animat after completion of an RC world is an accu-
rate metric for judging how efficient an animat traverses the
environment.

Figure 4 aggregates the average age of animats after the
completion of an RC world on the Robustness Test. Results



●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

60

70

80

90

100

s−SM e−SM FN HyperNEAT

Experiment Sets

C
om

pl
et

io
n 

(%
)

Figure 3: Completion percentage of Robustness Test across all strategies aggregated over 100 runs each. (s-SM = static shunting
model. e-SM = evolvable shunting model. FN = Full Network.)

are limited to those that achieved 98% or above on the RC
Robustness Test. Restricting to high completions provides
an accurate comparison between results. HyperNEAT is not
included as no runs achieved a completion percentage above
98%. As seen in figure 4, the s-SM stays consistent with
the median of average ages at 45.2. Yet, the e-SM produces
a lower median of 43.43 and the FN is able to drop further
to 42.5. Although, a two-sample t-test shows that the two
are statistically indistinguishable, but both have statistical
significance over the s-SM. Both the e-SM and FN also have
a lower spread than the s-SM but only the s-SM is able to
achieve the lowest average age of 33.05.

Figure 5 provides a representation of the activity land-
scapes of s-SM, e-SM, and FN on the same RC world. An
example has been purposely chosen in which the e-SM and
FN have an age advantage over the s-SM; this is done to
provide context to the improved average age. Viewing the
RC world after completion of the s-SM shows two attempts
at a connecting bridge. In motion, animats using s-SM lo-
cate stones close to the river and prematurely place the stone
while traversing forward. This is due to the shunting equa-
tion forcing animats forward without adequate space to re-
turn to the center of the river. If stones are further from the
river animats funnel to the center, as can be seen in the ac-
tivity landscape when an animat is holding the stone. This is
evident again when comparing stone locations from s-SM to
e-SM and FN; those closest to the river in s-SM have been
used to attempt an unsuccessful bridge.

Discussion
Compared to s-SM, both e-SM and FN were able to pro-
duce equally deliberate and robust motion planning in even

the most difficult RC worlds, while also achieving, on av-
erage, more efficient planning. The s-SM still provides su-
perior reliability in completion. Although, both the e-SM
and FN are inherently more difficult tasks and degradation
to completion average is minimal. In comparison to Hyper-
NEAT, the average e-SM completion was higher than Hy-
perNEAT’s fittest animat. Further, e-SM in this experiment
did not dismiss negative iota values like in the HyperNEAT
architecture. e-SM benefits from using a ReLU to avoid the
propagation of negative values. Thus, e-SM is capable of
replicating the shunting equation’s functionality. However,
the FN informs how this architecture may adapt to future
scenarios.

The FN shows that animats can learn reactive and delib-
erative actions simultaneously. It is reasonable to assume
this architecture would adapt to similar tasks. The difficulty,
in this task, comes from achieving the correct DN weights,
while finding a working form of motion planning. Without
a functional SM, it is difficult for the DN to converge on
a correct combination of weights due to lack of feedback.
Without a functional DN, the quality of the motion planning
cannot be assessed. Each plays an important role in the suc-
cess of the other. The larger deviation of completion results
may be explained by the outliers from s-SM and e-SM in
Figure 3. As expected, evolving motion planning can see in-
stances in which the training phase presents RC worlds that
do not translate to the variety of worlds in the Robustness
Test. As a result, those animats have poor completion re-
sults, dropping as low as 69%.

Despite the success of FN on this task, it is uncertain how
it will adapt to other architectures which use the SM. Less
than half the animats trained were able to achieve the high-



●●
●●●
●●●●●●●●●●

●●

●

●

●
●
●

●

●●

●

●●●●●●●●●

●

●

●

●●

40

50

60

s−SM e−SM FN

Experiment Sets

A
ge

Figure 4: Mean age of animats after a successful RC world completion in the Robustness Test. All strategies are showing
results from animats with 98% completion or higher in the Robustness Test. (s-SM = static shunting model. e-SM = evolvable
shunting model. FN = Full Network.)

est fitness; this is a poor result compared to the perfect com-
pletions of evolving each independently. Those similar to
this model, such as the RC+ task used in Borg et al. (2011),
could likely see success with this network while experienc-
ing a drop in completed runs. In contrast, a more difficult
task may see issues with the completion rate. The 3D im-
plementation of the RC task (Stanton and Channon 2015)
implements the same DN and static SM with the addition of
a fully connected feed-forward network, pattern generators,
and outputs for joint motors. Even with a static SM, ani-
mats already see a drop to 65% of the population exhibiting
the most difficult behaviour. Without an established motion
planning system, the 3D implementation may find it difficult
to gain traction.

The evolvable SM demonstrated an unforeseen, novel ad-
vantage over a purpose-built system. When compared to
the shunting equation, animats trained with e-SM and FN
achieved instances of the highest completion rate as well as
a superior average age on the Robustness Test. Analysis of
the s-SM shows RC worlds with stones close to the river
forced animats to create bridges in an unstructured manner.
By contrast, e-SM and FN created deliberate bridge designs
despite the location of the stones, see figure 5. Both evolv-
able strategies have activity landscapes which are difficult to
interpret, thus the filter weights were examined. e-SM cre-
ates pathways to positive values via diagonal paths, whereby
the corners are the most dominant of the 3x3 filter. FN op-
erates in a similar vein to the shunting equation; the weights
of the front and back of the filter are relatively equal. This
forces animats forwards or backward depending on what is
desirable. In motion, animats do not suffer from the long

and questionable choices in the movement which appears
with HyperNEAT. A highly pre-evolved e-SM could replace
the SM in models that use it. This would allow superior mo-
tion planning without changing the network architecture or
training.

Due to this hybrid architecture being the basis of further
work, there are already working examples of greater general
architectures this work can adapt. Currently, animats follow
the highest surrounding iota in the activity landscape. Work
in Stanton and Channon (2015) used a fully connected feed
forward neural network to allow evolution to discover the
relationships between iota values and movement; then, the
outputs provide direct control over the animat’s movement.
Work in Borg and Channon (2017) generalised the DN to
use RGB values as inputs, allowing greater abstraction from
task-specific interactions. This also allows a fixed DN de-
spite a varying number of object types in the world. As
these considerations are addressed, the network may adapt
to more complex scenarios and environments.

Conclusions and Future Work
This work demonstrates that a shallow ConvNet with recur-
rent connections is capable of producing deliberate and ro-
bust motion planning to the quality of a pre-designed solu-
tion, with greater efficiency. Further, both deliberative and
reactive behaviour can be achieved by evolving the entire
hybrid network simultaneously. These results were achieved
with an extremely simple GA.

Individuals were exposed to a task of scaling complexity
and required to complete the task at its most difficult be-
haviour multiple times. The use of a multi-evaluation fitness



RC World

s-SM e-SM FN
Age : 60 Age : 37 Age : 34

(a) Not holding Stone

(b) Holding Stone

(c) RC World after Completion

(d) Heatmap of movement

Figure 5: RC world with the corresponding activity landscapes for each strategy. Each strategy is labeled and given the age of
the animat after completion. Each strategy has a completion of 98+% in the Robustness Test.



function in training, as a stopping criteria, encourages the
evolution of motion planning that is adaptable to a variety of
different world combinations.

This work has shown that a hybrid architecture that
utilises a single layer ConvNet can achieve an average gen-
eral completion that is within 3% of the static variation in
a difficult deliberate task. The architecture could seemingly
adapt to other tasks designed in the same manner.

The combination of the decision network and evolvable
shunting model was highly successful in achieving efficient
motion planning, when evolving only the shunting model
and when evolving both simultaneously. The superior de-
liberate bridge building, achieved by each, shows potential
in the future for further unforeseen, novel benefits when re-
moving model restrictions. The limitations of the approach
are the drop in successful runs when the network is evolved
as a whole. Future work should continue to remove task-
specific aspects in favour of greater control from the net-
work. This would allow the architecture to adapt to unfore-
seen tasks.

References
Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013).

The Arcade Learning Environment: An evaluation platform
for general agents. Journal of Artificial Intelligence Research,
47:253–279.

Borg, J. M. and Channon, A. (2017). Evolutionary Adaptation to
Social Information Use Without Learning. In Proceedings of
the 20th European Conference on the Applications of Evolu-
tionary Computation, pages 837–852. Springer.

Borg, J. M., Channon, A., and Day, C. (2011). Discovering and
Maintaining Behaviours Inaccessible to Incremental Genetic
Evolution Through Transcription Errors and Cultural Trans-
mission. In Advances in Artificial Life, ECAL 2011: Proceed-
ings of the Eleventh European Conference on the Synthesis
and Simulation of Living Systems, pages 101–108. MIT Press.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Recti-
fier Neural Networks. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics,
pages 315–323. PMLR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual
Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 770–778. IEEE.

Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T.,
and Keutzer, K. (2014). Densenet: Implementing efficient
ConvNet descriptor pyramids. CoRR, abs/1404.1869.

Jolley, B. and Channon, A. (2018). Toward evolving robust, delib-
erate motion planning with HyperNEAT . In Proceedings of
the 2017 IEEE Symposium Series on Computational Intelli-
gence, pages 1–8. IEEE.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet
Classification with Deep Convolutional Neural Networks. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems, pages 1097–1105. Curran
Associates Inc.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997).
Face Recognition: A Convolutional Neural-Network Ap-
proach. IEEE Trans. Neural Networks, 8(1):98–113.

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for im-
ages, speech, and time series. The Handbook of Brain Theory
and Neural Networks, pages 255–258.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W. E., and Jackel, L. D. (1990). Handwrit-
ten digit recognition with a back-propagation network. In
Advances in Neural Information Processing Systems 2, pages
396–404. Morgan-Kaufmann.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86:2278–2324.

Meng, M. and Yang, X. (1998). A neural network approach to
real-time trajectory generation. In Proceedings of the 1998
IEEE International Conference on Robotics and Automation,
volume 2, pages 1725–1730. IEEE.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D., and Kavukcuoglu, K. (2016). Asynchronous
Methods for Deep Reinforcement Learning. In Proceedings
of The 33rd International Conference on Machine Learning,
pages 1928–1937. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,
S., and Hassabis, D. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529.

Robinson, E., Ellis, T., and Channon, A. (2007). Neuroevolu-
tion of agents capable of reactive and deliberative behaviours
in novel and dynamic environments. In Proceedings of the
Ninth European Conference on Artificial Life, pages 345–
354. Springer-Verlag.

Stanton, A. and Channon, A. (2015). Incremental Neuroevolution
of Reactive and Deliberative 3D Agents. In Proceedings of
the European Conference on Artificial Life 2015, pages 341–
348. MIT Press.

Stanton, A. and Channon, A. (2016). Neuroevolution of Feedback
Control for Object Manipulation by 3D Agents. In Proceed-
ings of the Fifteenth International Conference on the Syn-
thesis and Simulation of Living Systems (Artificial Life XV),
pages 144–151. MIT Press.

Such, F. P., Madhavan, V., Conti, E., Lehman, J., Stanley,
K. O., and Clune, J. (2017). Deep Neuroevolution: Ge-
netic Algorithms Are a Competitive Alternative for Training
Deep Neural Networks for Reinforcement Learning. CoRR,
abs/1712.06567.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov,
D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014).
Going Deeper with Convolutions. CoRR, abs/1409.4842.

Vaillant, R., Monrocq, C., and Le Cun, Y. (1994). Original
approach for the localisation of objects in images. IEE
Proceedings-Vision, Image and Signal Processing, 141:245–
250.


