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Abstract

Bipedal locomotion requires precise rhythm and balance.
Here we demonstrate two fitness-function enhancements ap-
plied to OpenAI’s 3D Humanoid-v1 walking task using a
replica of Salimans et al.’s evolution strategy (Salimans et al.,
2017). The first enhancement reduces control cost, following
a start-up period, and the second enhancement penalises poor
balance. Individually, each enhancement results in improved
gaits and doubles both median speed and median distance
walked. Combining the two enhancements results in little
further improvement in the absence of noise but is shown to
produce gaits that are much more robust to noise in their ac-
tions, with median speed, distance and time two to five times
those of the default and individual-enhancement gaits at an
intermediate noise level.

Introduction
Bipedal locomotion has been the focus of many studies
(Winter, 1991). Its emergence has been associated with en-
durance running and freeing the hands for other tasks such
as tool use (Hewes, 1961; Bramble and Lieberman, 2004).
The main challenges relate to balance and generating cyclic
motion across two limbs to produce a stable gait. In robotics,
bipedal walking is often achieved through zero-moment
point computation (Vukobratović and Borovac, 2004), for
example in evaluating fitness (Fukuda et al., 1997).

Initially, the notable instances of bipedal learning utilised
Central Pattern Generators. CPGs are recurrent neural net-
works that produce rhythmic activity (without requiring
rhythmic inputs) that is typically modulated by descending
or peripheral inputs (Guertin, 2013). Modelled after pat-
tern generators found in human and animal spines, they offer
a biologically inspired solution (Taga et al., 1991; Ijspeert,
2008; Van der Noot et al., 2015). Reil and Husbands used a
genetic algorithm to evolve a CPG’s weights to produce sta-
ble bipedal walking (Reil and Husbands, 2002). Measuring
fitness as distance from the point of origin, they achieved
a 10% stability success rate. This was improved to 80%
through the introduction of an oscillatory bonus in the fitness
function. Reil and Husbands also added sensors to achieve
directional walking. Directional motion was also exhibited

in (Gökçe and Akin, 2010), which used evolution strategies
(Beyer and Arnold, 2001) to optimise CPG-based walking
in simulation and then on real robots.

Following this, DeepMind used reinforcement learning to
train a 3D humanoid model (Tassa et al., 2012), using the
MuJoCo physics engine (Emanuel Todorov et al., 2012), to
produce complex bipedal locomotion (Heess et al., 2017).
A distance-based reward function and policy-based gradient
descent learning were used in incrementally complex envi-
ronments to produce behaviours. The humanoid agents were
able to demonstrate running, crouching, jumping and turn-
ing behaviours, the most notable successful model to date.

Salimans et al. (OpenAI) evolved walking gaits for the
MuJoCo 3D Humanoid-v1 environment in OpenAI Gym
(Tassa et al., 2012; Brockman et al., 2016) using an evolution
strategy (Salimans et al., 2017). The architecture described
in their paper was a multilayer perceptron with two 64-unit
hidden layers (using tanh units) mapping 376 inputs to 17
joint torques. In each iteration, many episodes were run us-
ing random parameter perturbations to test the robustness of
the current strategy. The strategy parameters for the next
iteration were then updated based on the calculated gradi-
ent estimate of the combined episode results. This produced
successful biped neurocontrollers in as little as ten minutes,
using 1440 CPU cores.

Subsequently, Petroski Such et al. (Uber AI Labs) used
a genetic algorithm on the same problem (3D Humanoid-
v1), using two 256-unit hidden layers (matching the con-
figuration file included in the source code released by Sali-
mans et al.), achieving success on this task but noting that
their GA “took 15 times longer to perform slightly worse
than ES” (Petroski Such et al., 2018). They also noted that
(while only just qualifying as a deep neural network, having
more than one hidden layer) this network contains approxi-
mately 167k parameters, orders of magnitude greater than
the previous largest neural networks evolved for robotics
tasks. They encoded these parameters using a novel method
that stores, for each genotype, an initialization seed and a
list (that grows with each mutation) of random seeds used
to generate mutations to the vector of parameters. They



Figure 1: The Humanoid-v1 walker used in this and previous
work (Salimans et al., 2017; Petroski Such et al., 2018; Conti
et al., 2018).

also applied a weighted novelty-search version of the ES,
which was able to produce high scores in a deceptive envi-
ronment that required the humanoid to walk around a trap
(Conti et al., 2018) and demonstrated that ES is more robust
to parameter perturbation in the humanoid locomotion task,
than both their GA and Trust Region Policy Optimization
(Lehman et al., 2018).

In this paper we report on two enhancements that en-
able Salimans et al.’s evolution strategy, using two 256-unit
hidden layers, to produce populations of 3D Humanoid-v1
agents (figure 1) that walk further and faster and exhibit
novel gaits with much increased robustness to the addition of
noise to actions. We also report on the interaction between
the two enhancements and how they overcome the difficulty
of the task.

Methods
The methods featured here are applied to a replica of Sal-
imans et al.’s evolution strategy, which was already capa-
ble of producing gaits that move 3D Humanoid-v1 agents
quickly and efficiently enough to pass the humanoid walk-
ing task. The humanoid walker’s goal is to travel (in any
direction) as fast and efficiently as possible, failing when its
torso falls below (or above) a certain height. Fitness is de-
fined as the sum (over time) of four rewards/penalties that
are computed at each timestep: a reward for linear veloc-
ity, a control cost based on energy expended, a cost based
on how hard the humanoid impacts the ground, and a re-
ward for standing. Our methods aim to improve average
speed, distance travelled and episode duration (time). We
also aim to improve robustness to noise in the application of
actions. Each permutation of enhancements (and the default
base-case) was run 20 times, each for 600 iterations (gen-
erations). The standard evolution strategy was used due to

its superior performance (see above). As mentioned above,
the architecture maps 376 inputs (humanoid state variables:
position, rotations, velocities, forces and inertia values) to
17 joint torques, from which we conclude approximately
30k parameters (weights and biases). Each set of 20 runs
took around three days to evolve using 40 CPU cores. Each
episode (walker fitness evaluation) was limited to a maxi-
mum of 1000 timesteps.

Fitness Function Enhancements
Fitness is the sum (over time) of four rewards/penalties that
are computed at each timestep: a reward for linear velocity,
a control cost based on energy expended, a cost based on
how hard the humanoid impacts the ground, and a bonus for
having not failed:

r = linvel − contcost− impcost+ alivebonus

Even in the default case, without any enhancement, this led
to the evolution of fast, efficient walking in line with previ-
ous results. The impact cost prevented hopping behaviours.
However, a considerable number of evolved gaits involved
a shuffling motion. These walkers slid along the floor with
small movements of their feet.

Control-cost enhancement The first enhancement em-
ployed involved reducing the control cost within the fitness
function. To encourage gaits that use more motion in novel
ways, we applied a scalar multiplier to the control cost term,
allowing for new behaviours at the cost of generating less
efficient walkers (when the multiplier is below 1). This mul-
tiplier can be applied throughout each simulation episode or
from a set timestep during each simulation episode. The
latter was thought to be potentially beneficial as the gaits
evolved typically have a “catch” phase in which walkers
align themselves from the starting position into cyclic mo-
tions, which can be disrupted by a low control cost. The aim
of this set of runs was to produce novel gaits with longer
walks by reducing the control cost in the fitness function.

Balance enhancement The second enhancement em-
ployed was a fail condition involving the balance of the
walker. In the original system, balance is described as the
walker’s torso’s center’s vertical (z-) component being out-
side the range of 1-2 simulation units. To improve walkers’
episode durations (walking times) an additional constraint
was introduced for the x- and y-dimensions, to terminate
walkers with less upright postures. If the torso’s center of
mass moved outside a circle centered at the midpoint be-
tween the walker’s two feet (each projected down to the
ground plane) then it was considered a failure. The circle’s
radius is set as a multiple of the current distance between
the midpoint and (either) foot. The radius-multiplier can be
chosen to give a more or less tight constraint. The aim of
this set of runs was to produce novel gaits with longer walks
through stricter balance enforcement.



Combined enhancement The two enhancements were
also combined, using the most successful parameters
(control-cost multiplier and its delay, and balance-circle
radius-multiplier) for each. The aim of this was to test if
such a combination would achieve superior results.

Robustness to Action Noise
The MuJoCo 3D Humanoid-v1 environment contains a pa-
rameter for the standard deviation (ac noise std) of Gaus-
sian noise to be added to the actions taken by walkers. To
test the robustness of the evolved gaits, we evaluated evolved
walkers with noise levels (ac noise std) from 0 (no noise)
to 1, in order to observe the degradation of each major met-
ric (average speed, distance travelled and episode time) until
the walkers no longer achieved (lengths long enough to be
typical of) stable gaits. The aim of this was to test whether
or not the combined enhancement would result in more ro-
bust gaits, i.e. gaits with higher values in these metrics at
higher levels of noise.

Results
Control-cost enhancement
Figure 2 shows the results for the default (d, no-
enhancement) evolved behaviours and for walkers evolved
with a control-cost multiplier of 0.25. 0.25 was chosen due
to its promising results from initial testing of several mul-
tiplier values from 0.2 to 5. The multiplier was applied
throughout (xp25) or from timestep 150 (s150, an estimate
of the time at which the successful default gaits were reach-
ing cyclic motion) or from timestep 500 (s500, the halfway
point for a full-length episode). Median speed (averaged
over the time of each evaluation) in the s500 runs was more
than twice that in the default runs, with the former distri-
bution significantly higher than the latter (Mann-Whitney
U=112, n1=n2=20, p<0.05 one-tailed). Median distance
traveled in the s500 runs was also more than twice that in the
default runs, with the former distribution significantly higher
than the latter (Mann-Whitney U=121, n1=n2=20, p<0.05
one-tailed). For time per episode, all medians were the max-
imum value (1000) and no significant difference was found.

Figure 5 includes high-performing gaits produced by
the default and s500 runs, without action noise. The de-
fault runs’ gait (top-left) shows a shuffling behaviour based
around the knee joints. The s500 runs’ gait (top-right) also
shows a shuffling gait using the knee joints but, unlike the
gaits produced by the default, the knees cross over, putting
one leg in front of the other. This improved gait may be due
to reduced importance of keeping energy expenditure low
(at least per timestep rather than per unit distance) once a
walker has reached a cyclic motion.

Balance enhancement
Figure 3 shows the results for the default (d) evolved be-
haviours and for walkers evolved with the balance enhance-

ment, with balance-circle radius-multipliers 1.00 (rp100),
0.75 (rp75), 0.5 (rp50) and 0.25 (rp25). Median speeds in the
rp75 and rp50 runs were more than twice that in the default
runs, with the former distributions significantly higher than
the latter (rp75 Mann-Whitney U=97, n1=n2=20, p<0.05
one-tailed; rp50 Mann-Whitney U=92, n1=n2=20, p<0.05
one-tailed). Median distances traveled in the rp75 and rp50
runs were also more than twice that in the default runs, with
the former distributions significantly higher than the latter
(rp75 Mann-Whitney U=91, n1=n2=20, p<0.05 one-tailed;
rp50 Mann-Whitney U=99, n1=n2=20, p<0.05 one-tailed).
For time per episode, all medians were the maximum value
(1000) except for the rp25 runs, which failed to produce a
successful gait; the rp75 distribution was significantly higher
than the default (Mann-Whitney U=150, n1=n2=20, p<0.05
one-tailed).

Figure 5 includes (bottom-left) a high-performing gait
produced by the rp75 (0.75 radius-multiplier) runs, without
action noise. The walker drags itself forward with one leg
while pumping its arm for momentum, a behaviour previ-
ously unseen in the gaits produced by the default.

Combined enhancement

Figure 4 shows the results for the default (d) evolved be-
haviours, for walkers evolved with the most successful
control-cost and balance-enhancement parameters (s500 and
rp75) and for those evolved with the two enhancements
combined (s500 combined with rp75). Median speed and
median distance in the combined-enhancement were again
more than twice those in the default runs, with the for-
mer distributions significantly higher than the latter (speed
Mann-Whitney U=79, n1=n2=20, p<0.05 one-tailed, dis-
tance Mann-Whitney U=74, n1=n2=20, p<0.05 one-tailed).
No significant increase in median speed or median distance
was found between the s500 or rp75 runs and the combined-
enhancement runs, although all four one-tailed p-values
were below 0.15, suggesting that further runs might be use-
ful to better investigate whether or not there is a significant
difference here; however, it seems unlikely that any differ-
ence in median (between s500 and combo or between rp75
and combo) would be large even if significant. This may be
because the two enhancements work in opposite directions,
in that one is a reduction in control cost, allowing greater
movement, while the other is a restriction on movement. For
time per episode, the combined-enhancement runs matched
the rp75 runs in having all gaits reach 1000 timesteps, al-
though it is possible that increasing the 1000-timesteps limit
could reveal a difference.

In the absence of noise, the highest-performing
combined-enhancement gaits showed no noteworthy
novelties, with all featuring either wide-legged shuf-
fling with no leg crossover or single-leg dragging gaits. An
example of the former can be seen in figure 5 (bottom-right).



Figure 2: Results for the default evolved behaviours and for walkers evolved with the 0.25 control-cost multiplier throughout,
from 150 timesteps and from 500 timesteps: speed (left), distance (middle) and time (right) for each set of 20 runs.

Figure 3: Results for the default evolved behaviours and for walkers evolved with balance-circle radius-multipliers 1.00, 0.75,
0.5 and 0.25: speed (left), distance (middle) and time (right) for each set of 20 runs.

Figure 4: Results for the default evolved behaviours and for walkers evolved with the 0.25 control-cost multiplier from 500
timesteps, with the 0.75 balance-circle radius-multiplier and with a combination of the two: speed (left), distance (middle) and
time (right) for each set of 20 runs.



Figure 5: Gaits without noise. Frame order is from left to right and top to bottom. In a high-performing gait from the default
runs (top-left) the biped shuffles by alternating its knees in an unnatural motion. In a high-performing gait from the s500 runs
(0.25 multiplier from 500 timesteps, top-right) the biped puts one leg in front of the other in succession, with a much wider
range than the default’s shuffling behaviours. In a high-performing gait from the rp75 runs (bottom-left) the biped pulls itself
forward on one leg and pumps one arm for momentum, something previously unseen. In a high-performing gait from the combo
runs (bottom-right) the biped shuffles similarly to the default gait, but with a wider spread of the legs. (The darkness at the end
of the figures occurs as the humanoids walk out of the range of the white floor texture.) Videos of these gaits can be found at
https://github.com/KeeleBenJa/bipedal-methods.

Figure 6: Results from scaling action noise from 0 to 1 for the default, 500 delay, 0.75 radial multiplier and combination of the
two: speed (left), distance (middle) and time (right) averaged over each set of 20 runs.



Robustness to Action Noise
Figure 6 shows the degradation of average speed, distance
travelled and time per episode with increasing levels of ac-
tion noise. The combined-enhancement runs were much
more robust to action noise than the default, particularly
around noise=0.4. The rp75 and s500 runs produced inter-
mediately robust gaits (i.e. more so than default but less so
than for the combined-enhancement) at low levels of action
noise but performed no better than default at medium to high
levels of noise.

Figure 7 provides a closer look at the noise results at the
0.4 level, at which the combined-enhancement runs exhib-
ited consistently superior results. In contrast to the without-
noise results, the combined-enhancement results now show
large, statistically significant improvements over the individ-
ual control-cost and balance enhancements. Median speed
in the combined-enhancement runs was more than twice that
in the default runs and the combined-enhancement distribu-
tion was significantly higher than the default runs (Mann-
Whitney U=79, n1=n2=20, p<0.05 one-tailed), the s500
runs (U=130, p<0.05 one-tailed) and the rp75 runs (U=99,
p<0.05 one-tailed). Median distance in the combined-
enhancement runs was more than twice that in the default,
s500 and rp75 runs, and the combined-enhancement distri-
bution was significantly higher than the default runs (Mann-
Whitney U=53, n1=n2=20, p<0.05 one-tailed), the s500
runs (U=88, p<0.05 one-tailed) and the rp75 runs (U=70,
p<0.05 one-tailed). Median episode time in the combined-
enhancement runs was also more than twice that in the de-
fault, s500 and rp75 runs, and the combined-enhancement
distribution was significantly higher than the default runs
(Mann-Whitney U=67, n1=n2=20, p<0.05 one-tailed), the
s500 runs (U=74, p<0.05 one-tailed) and the rp75 runs
(U=62, p<0.05 one-tailed).

Figure 8 shows the four previous high-performing gaits
under noise level 0.4. The default (top-left), s500 (top-
right, 0.25 control-cost multiplier from 500 timesteps) and
combined-enhancement (bottom-right) runs produced simi-
lar gaits to figure 5 but with much wider motions, flailing
limbs more. The rp75 (bottom-left, 0.75 radius-multiplier)
gait arches the walker’s back a little more but otherwise re-
mains more stable, continuing to pump its arm.

Conclusions
Two fitness-function enhancements were tested to assess
their affects on the speed, distance and duration of 3D
Humanoid-v1 walks evolved using a replica of Salimans et
al.’s evolution strategy (Salimans et al., 2017). The first
enhancement was to reduce control cost within the fitness
function. When control cost was reduced to a quarter of
the default, from the 500th timestep (the halfway point for
a full-length episode), median speed and median distance
both doubled. The most notable gait produced using this en-
hancement had a more pronounced stance and swing phase,

putting one leg in front of the other in a clearer fashion than
any gait produced using the default fitness function.

The second enhancement was a balance enhancement, ter-
minating walking when the torso’s center of mass moved
outside a circle centered at the midpoint between the
walker’s feet. When the circle’s radius was 0.75 times cur-
rent distance between the midpoint and (either) foot, me-
dian speed and median distance both doubled. In the most
notable gait produced using this enhancement, the walker
drags itself forward with one leg while pumping its arm for
momentum, a behaviour previously unseen in the gaits pro-
duced by the default fitness function.

The two enhancements were also combined, using the
most successful parameters for each (as above). Me-
dian speed and median distance were again double those
in the default runs. However, there was little difference
in these medians between the combined-enhancement and
individual-enhancement runs and, in the absence of noise,
the combined-enhancement gaits showed no noteworthy
novelties.

To test the robustness of the evolved gaits, we evaluated
evolved walkers with the addition of noise to their actions.
The combined-enhancement gaits were much more robust to
action noise than the default. The individual-enhancement
gaits were intermediately robust at low levels of action
noise but performed no better than default at medium to
high levels of noise. In contrast to the without-noise re-
sults, the combined-enhancement gaits showed large, statis-
tically significant improvements over those from the indi-
vidual control-cost and balance enhancements, with median
speed, distance and time two to five times those of the de-
fault and individual-enhancement gaits. This shows that the
two enhancements synergise well to produce gaits that are
robust to noise in their actions.

Future work will include further investigation into the rea-
son for the large improvements exhibited by the combined-
enhancement gaits in the presence of action noise, in con-
trast to the without-noise results. Removing or increas-
ing the 1000-timesteps episode time limit would help to
establish how much further the combined-enhancement
can improve results, with and without noise. This will
also help in establishing an upper bound for the op-
timal delay for the control-cost enhancement. Ope-
nAI have ported the Humanoid walking task (and other
tasks) from MuJoCo to the open-source Bullet Physics
Engine and added more challenging tasks involving run-
ning toward a flag (https://openai.com/blog/roboschool/
https://github.com/openai/roboschool). Despite the emer-
gence of improved locomotive gaits, the resulting controllers
do not yet produce gaits as lifelike as that demonstrated in
(Reil and Husbands, 2002), or achieve as complex behaviour
as that demonstrated in (Heess et al., 2017). We intend
to evaluate our individual and combined enhancements on
these more challenging tasks and to investigate the use of



Figure 7: Results with action noise=0.4; for the default evolved behaviours and for walkers evolved with the 0.25 control-cost
multiplier from 500 timesteps, with the 0.75 balance-circle radius-multiplier and with a combination of the two: speed (left),
distance (middle) and time (right) for each set of 20 runs.

Figure 8: Gaits with noise = 0.4, from the controllers shown (without noise) in figure 5. Frame order is from left to right and
top to bottom. In the default-runs gait (top-left) the biped shuffles by alternating its knees in a more erratic way than before.
In the s500-runs gait (top-right) the biped still puts one leg in front of the other, but much more loosely. In the rp75-runs gait
(bottom-left) the biped uses one arm for momentum and is not affected too heavily by the noise, only bending its back more.
In the combo-runs gait (bottom-right) the biped shuffles on its knees with a wide stance, making more flailing motions than
previously. (The darkness at the end of the figures occurs as the humanoids walk out of the range of the white floor texture.)
Videos of these gaits can be found at https://github.com/KeeleBenJa/bipedal-methods.



deeper networks in all of these tasks.
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