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Abstract

Populations of individuals exist in a wide range of sizes, from
billions of microorganisms to fewer than ten individuals in
some critically endangered species. In any evolutionary sys-
tem, there is significant evolutionary pressure to evolve se-
quences that are both fit and robust; at high mutation rates,
individuals with greater mutational robustness can outcom-
pete those with higher fitness, a concept that has been referred
to as survival-of-the-flattest. Previous studies have not found
a relationship between population size and the mutation rate
that can be tolerated before fitter individuals are outcompeted
by those that have a greater mutational robustness. However,
using a genetic algorithm with a simple two-peak fitness land-
scape, we show that the mutation rates at which the high, nar-
row peak and the lower, broader peak are lost for increasing
population sizes can be approximated by exponential func-
tions. In addition, there is evidence for a continuum of muta-
tion rates representing a transition from survival-of-the-fittest
to survival-of-the-flattest and subsequently to the error catas-
trophe. The effect of population size on the critical mutation
rate is shown to be particularly noticeable in small popula-
tions. This provides new insight into the factors that can af-
fect survival-of-the-flattest in small populations, and has im-
plications for populations under threat of local extinction.

Introduction
Biological population sizes can range from small numbers
of individuals to very large numbers of individuals. For ex-
ample, RNA viruses can reach population sizes of around
1010 in a short amount of time (Comas et al., 2005), whereas
some animal species may exist in populations consisting of
only hundreds or even fewer than ten individuals in some
critically endangered species saved on the brink of extinc-
tion. A population of genomes constantly evolves through
the processes of mutation, recombination (in sexual repro-
duction), selection and genetic drift (Hartl and Clark, 2007).
Population dynamics can be modelled in silico using genetic
algorithms, in which populations of sequences are allowed
to undergo mutation, recombination and selection at speci-
fied rates; studies can be done in a controlled environment
within time-frames not possible in many natural biological
systems, producing results that are comparable both to the-
ory and to experimental results in microorganisms.

In any evolutionary system, including genetic algorithms
and natural biological systems, there is significant evolu-
tionary pressure to evolve sequences that are both fit and
robust (Jones and Soule, 2006). Robustness is defined as
the average effect of a specified perturbation (such as a new
mutation) on the fitness of a specified genotype (Masel and
Trotter, 2010). The more robust a genotype, the smaller the
effect of mutation on fitness; in systems with high levels of
mutation, robustness can reduce the negative effects of dele-
terious mutation. Smaller populations are more susceptible
to loss of fitness through random genetic drift (Comas et al.,
2005; Hartl and Clark, 2007). Therefore it is expected that
population size should influence the size of mutation rate
that can be tolerated before fitter individuals are outcom-
peted by those with a greater mutational robustness.

Mutational Robustness and
Survival-of-the-flattest

The concept of a fitness landscape was introduced by Wright
(1932) and later combined with the notion of sequence space
by Eigen and Schuster (1979). Each sequence in sequence
space has a fitness value, which represents its relative repli-
cation capacity (Domingo and Wain-Hobson, 2009). Fitness
landscapes are sometimes considered to resemble mountain
ranges, with the fittest sequences at the peaks. However,
the concept requires a more careful interpretation in high di-
mensional sequence spaces with low alphabet size, such as
nucleic acids, which have an alphabet size of four (in that
they are sequences consisting of four possible units, A, C, G
and T). For example, the space of N-length binary sequences
is an N-dimensional hypercube rather than a 3-dimensional
Euclidean geometry, and can only be represented as such by
use of a reductive transform between the two spaces. Ex-
ploration of sequence space is done through evolution by
mutation, recombination and selection in accordance to the
fitness landscape. Selection increases the frequencies of the
fittest sequences, while mutation introduces variation, often
at a cost to individual fitness. The balance between these
two forces is referred to as the mutation-selection balance
(Kimura and Maruyama, 1966; Bull et al., 2005). A popula-



tion in mutation-selection balance will tend to cluster around
the fitness peaks and form what is known as a quasispecies
(Eigen and Schuster, 1979; Bull et al., 2005; Nowak, 2006).

In a landscape with a single fitness peak, a quasispecies
is able to maintain its position surrounding the top of the
peak so long as the mutation rate does not exceed a par-
ticular rate known as the error threshold. Above this thresh-
old, there is an error catastrophe and the population delocal-
izes across sequence space (Tannenbaum and Shakhnovich,
2004; Bull, 2005; Nowak, 2006; Takeuchi and Hogeweg,
2007; Domingo and Wain-Hobson, 2009; Schuster, 2009;
Tejero et al., 2011).

The concept of error threshold was introduced in Eigen et
al. (1988) and later in Nowak and Schuster (1989) based on
the quasispecies equation:

ẋi =
m∑

j=1

xjfjqji − φxi

Here, xi is the frequency of genotype number i, where
i ∈ [1, . . . , αn], α is the alphabet size, n is the length of
sequences,

∑
xi = 1, fj is fitness (selection), φ =

∑
xifi

is the average fitness, and qji is a transition probability (mu-
tation). The derivative in time is denoted ẋ, and there are m
genetic sequences.

Selection and mutation provide two forces (or pressures)
on the population, and they can be combined into one matrix
(wji = fjqji) (see Nowak (2006), p. 35). Selection draws
the population closer to the highest fitness, while mutation
is usually assumed to have deleterious effect due to which
the population drifts away from the highest fitness. Gener-
ally, the population converges to a stable (equilibrium) state
that is defined by an eigenvector of the mutation-selection
matrix (wji). This eigenvector corresponds to the largest
eigenvalue of (wji), which is the average fitness φ.

The idea of an error threshold is based on the existence
of a mutation-selection balance when the effect of mutation
does not exceed that of the selection pressure. The corre-
sponding value of the mutation rate is referred to as the error
threshold, and it is the maximal mutation rate that allows a
population to stay centred ‘around’ the fitness peak.

However, in landscapes with more than one peak, there
may also be one (or more) critical mutation rates at which
the population loses its ability to localize to fitter peaks,
while potentially retaining its ability to remain on lower, flat-
ter peaks (Wilke et al., 2001; Tannenbaum and Shakhnovich,
2004; Comas et al., 2005; Wilke, 2005). This represents
a phase transition from survival-of-the-fittest to survival of
those individuals with greater mutational robustness, a con-
cept referred to as survival-of-the-flattest (Wilke et al., 2001;
Bull et al., 2005; Comas et al., 2005; Wilke, 2005; Sanjuán
et al., 2007; Sardanyés et al., 2008; Tejero et al., 2011). This
concept is based on the idea that at low mutation rates, selec-
tion favours individuals in a quasispecies that reside at peaks

with higher fitness, even if the peaks are steep and narrow,
due to the rarity of mutations that push individuals off the
peaks (Lenski et al., 2006). In contrast, at high mutation
rates, selection favours individuals that reside at peaks less
likely to result in off-peak mutations: individuals located in
flatter regions of the fitness landscape are less likely to suf-
fer large reductions in fitness compared with those that may
be initially fitter but reside in parts of the landscape with
steeper peaks. Individuals that are part of a neutral network
(Kimura, 1983), in that they are surrounded by other indi-
viduals with equivalent fitness, are said to be mutationally
robust (Bull et al., 2005; Bornberg-Bauer and Kramer, 2010;
Wilke, 2001a; Wilke, 2001b); their fitness will be less sensi-
tive to mutation than individuals that are not well connected.

Survival-of-the-flattest has been observed in digital organ-
isms (Wilke et al., 2001; Sardanyés et al., 2008), theoreti-
cally (Wilke, 2001a; Sardanyés et al., 2008), in simulated
RNA evolution (Wilke, 2001b), and in RNA viruses (San-
juán et al., 2007). In addition, evolution of mutational ro-
bustness has been observed in simulated RNA evolution (van
Nimwegan et al., 1999) and in laboratory protein evolution
experiments (Bloom et al., 2007). Both van Nimwegan et
al. (1999) and Bloom et al. (2007) place an emphasis on the
degree of polymorphism in the population, suggesting that
highly polymorphic populations are more likely to spread
across many nodes of a neutral network (each correspond-
ing to a genotype), concentrating at highly connected parts;
individuals at highly connected nodes have greater robust-
ness to mutation, which they pass on to the next generation.
Robustness will evolve in any population where the prod-
uct of the population size and frequency of mutation per se-
quence per generation is sufficiently large (>1). Krakauer
and Plotkin (2002) refer to flat landscapes as redundant, and
steeper landscapes as antiredundant. They suggest that both
in theory and in individual-based stochastic simulations, re-
dundancy increases the mean fitness in small populations as
it masks mutations that arise due to mutational drift. How-
ever, large populations are less affected by drift, and so are
more able to occupy high-fitness peaks in sharp landscapes.

Wilke (2001b) ran simulations with population sizes as
low as 100 and noted “that for very small populations, the
predictive value of the differential equation approach dimin-
ishes”. Later Wilke noted that his results agreed with Comas
et al. (2005) in finding “that population size played only a
minor role in determining the position of the critical muta-
tion rate” (Wilke, 2005), within the context of their experi-
ments. Comas et al. used population sizes as low as 250 and
concluded “that the critical mutation rate was independent
of population size” (Comas et al., 2005) despite the fact that
there did appear to be some correlation for certain cases.

Jones and Soule (2006) determined that the role of ge-
netic robustness in evolution differs significantly depending
on whether it is a generational or steady state genetic algo-
rithm that is being used. In a steady state algorithm, only



a few individuals are replaced at a time, as opposed to a
generational algorithm which replaces the entire population
at once. Many studies that have confirmed the notion of
survival-of-the-flattest have used generational models, such
as Wilke et al.’s (2001) evolution of digital organisms in
Avida, and Krakauer and Plotkin’s (2002) study of redun-
dancy and antiredundancy (Jones and Soule, 2006). Jones
and Soule suggest that for evolutionary dynamics experi-
ments, the class of algorithm used can have a significant ef-
fect on the observed outcome. They point to steady state
algorithms as being of particular interest to the artificial life
community, as natural evolution resembles the action of a
steady-state-like algorithm: evolution in biological systems
does not usually follow the generational approach of evolv-
ing every individual in the population synchronously.

However, the problem with steady state algorithms is that
they typically allow individuals to survive on fitness peaks
indefinitely. This is not a realistic property when modelling
evolutionary dynamics. A preferable approach is to use a
generational genetic algorithm which retains the key fea-
tures of steady state evolution: fitness rank-based selection
and a degree of asynchronicity. It should be noted that fit-
ness in this sense refers to a score assigned to each individual
based on a given fitness function, as opposed to the biologi-
cal definition of fitness as a measure of replication rate; the
exact fitness values used are unimportant as it is relative fit-
ness that determines which individuals are selected. Rank-
based selection (the assignment of reproductive fitness rates
according to fitness score rank) overcomes the scaling prob-
lems of fitness score proportional selection (the assignment
of reproductive fitness rates in proportion to fitness score), so
creating a general model from a specific fitness score land-
scape such as that in figure 1, while retaining the key prop-
erty that sequences with higher fitness scores have (prob-
abilistically) more offspring than those with lower scores.
This approach also allows for the existence of a critical mu-
tation rate: with a standard steady state algorithm, always
retaining the fittest individual prevents the population from
ever losing the highest current peak.

Simulation Model
An individual sequence consists of a string of characters
drawn from an alphabet of size 4 (which can be thought
of as, for example, A/C/G/T or 0/1/2/3) with a fixed length
of 30. In each step of the algorithm, three individual se-
quences are selected at random from the population. Two
of the three selected individuals are chosen as parents in a
crossover which replaces the third individual with the result-
ing child. The child is then subject to one round of point mu-
tation (to a different base) at a given per-base mutation rate.
The individual to be replaced is decided each time based on
the fitnesses of the three selected individuals: there is an
equally small chance of either of the two fittest of the three
being replaced (25%), and a larger chance of replacing the
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Figure 1: Two-peak fitness landscape, with one narrow peak
of high fitness (peak 0), and one broader, flatter peak of
lower fitness (peak 1).

least fit (50%). This process continues until each individual
in the population has been chosen exactly once; this repre-
sents one generation, and ensures that there is no chance of
any individual avoiding being chosen and so remaining static
in the landscape. The fitness of each individual sequence is
evaluated based on a two-peak fitness landscape with one
narrow peak of high fitness (peak 0), and a broader, flatter
peak with lower fitness (peak 1) (figure 1). Peak 0 has a
maximum fitness score of 15 and a radius (Hamming dis-
tance from top-of-peak to zero fitness score) of 2; peak 1
has a maximum fitness score of 10 and a radius of 5, with
its top chosen as an arbitrary point (fixed throughout evolu-
tion) with a Hamming distance of 10 from the top of peak 0.
Individuals are allowed to move anywhere on the slopes, or
in between the peaks. This is a simple landscape in which
survival-of-the-flattest can occur. The effect of mutation on
fitness is smaller within peak 1 than within peak 0; individu-
als located on peak 1 will have higher mutational robustness
compared with those located on peak 0.

Following the experimental procedure designed by Wilke
et al. (2001) (and used by Comas et al., 2005) we initialized
half of the population of sequences to be on top of the high,
narrow peak, and the other half to be on top of the lower, flat-
ter peak. This procedure prevents initialization bias between
peaks. The simulation was run for 10,000 generations, and
the number of generations it took to first lose each peak was
recorded (where a peak was considered to be lost when there
were no individuals present anywhere in its range). If a peak
was never lost within the 10,000 generations, a value of -
1 was recorded. A range of per-base mutation rates was
tested for a range of population sizes. The simulation was
run 2,000 times for each combination of mutation rate and
population size. The mutation rate by which 95% of the runs
had lost each peak was recorded, where a peak was consid-
ered to have not ever been lost only if there were individuals
remaining on it at the end of the 10,000 generations.



Population size (m) Observed µ0 Stretched Exponential ε0 Difference δ0 (µ0-ε0) Difference/Stretched Exp. (δ0/ε0)
10 0.150% 0.150% 0.000% 0.1%
20 0.550% 0.554% -0.004% -0.8%
30 0.750% 0.742% 0.008% 1.0%
40 0.850% 0.853% -0.003% -0.4%
50 0.925% 0.926% -0.001% -0.1%
60 0.975% 0.978% -0.003% -0.3%
70 1.025% 1.017% 0.008% 0.8%
80 1.050% 1.046% 0.004% 0.4%
90 1.065% 1.070% -0.005% -0.4%
100 1.080% 1.089% -0.009% -0.8%
200 1.170% 1.172% -0.002% -0.2%
300 1.200% 1.197% 0.003% 0.3%
400 1.210% 1.207% 0.003% 0.2%
500 1.215% 1.212% 0.003% 0.2%
600 1.220% 1.215% 0.005% 0.4%
700 1.225% 1.217% 0.008% 0.7%
800 1.225% 1.218% 0.007% 0.6%
900 1.210% 1.219% -0.009% -0.7%

1000 1.205% 1.219% -0.014% -1.2%

Table 1: Mutation rate µ0 by which 95% of runs lost peak 0.

Results

The results (figure 2, and tables 1 and 2) show that pop-
ulation size affects the size of mutation rate required for
the predominant outcome of the runs to shift from survival-
of-the-fittest to survival-of-the-flattest, and that this is par-
ticularly noticeable in populations with 100 individuals or
less. Similarly, the size of mutation rate required for ap-
proximately 95% of the runs to have lost both peaks also has
a dependence on population size. The results of the simu-
lation can be approximated by a simple exponential func-
tion: y = A − B mC for some values of the parameters
A, B and C, where m is population size. However, they
are more closely fitted by a stretched exponential function:
y = A−B ∗ e−((m/C)D).

As opposed to there being instantaneous transitions from
survival-of-the-fittest to survival-of-the-flattest and to the er-
ror catastrophe, at discrete mutation rates, there appear to be
gradual transitions in which there are shifts in tendency from
the first to the second, and from the second to the third. The
mutation rate corresponding to 95% of the runs having lost
the high, narrow peak (peak 0) within 10,000 generations
marks a point at which the former transition (from survival-
of-the-fittest to survival-of-the-flattest) is essentially com-
plete. This can be considered as a critical mutation rate.
For a population of 100 individuals, this is at a per-base mu-
tation rate of approximately 1.08% (table 1). Figure 3(a)
shows the number of generations taken to lose each peak at
this mutation rate, for each of the 2,000 runs with population
size 100. Just 52% of these runs lost peak 1 within the dura-
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Figure 2: The results of the simulation for both peak 0
(high, narrow peak) and peak 1 (lower, flatter peak) can
be approximated by an exponential function, where y =
A − B ∗ e−((m/C)D)(with m being population size). The
parameters obtained by curve-fitting using a least squares
method were, for peak 0: A = 1.221%, B = 7.001%, C
= 1.440, D = 0.3250 , and for peak 1: A = 2.184%, B =
5.438%, C = 7.721, D = 0.3978.



Population size (m) Observed µ1 Stretched Exponential ε1 Difference δ1 (µ1-ε1) Difference/Stretched Exp. (δ1/ε1)
10 0.400% 0.389% 0.011% 2.8%
20 0.900% 0.921% -0.021% -2.3%
30 1.200% 1.206% -0.006% -0.5%
40 1.400% 1.390% 0.010% 0.7%
50 1.500% 1.520% -0.020% -1.3%
60 1.600% 1.617% -0.017% -1.0%
70 1.700% 1.692% 0.008% 0.4%
80 1.800% 1.753% 0.047% 2.7%
90 1.825% 1.802% 0.023% 1.3%
100 1.850% 1.843% 0.007% 0.4%
200 2.000% 2.043% -0.043% -2.1%
300 2.100% 2.109% -0.009% -0.4%
400 2.120% 2.140% -0.020% -0.9%
500 2.140% 2.156% -0.016% -0.7%
600 2.160% 2.165% -0.005% -0.2%
700 2.180% 2.171% 0.009% 0.4%
800 2.185% 2.174% 0.011% 0.5%
900 2.190% 2.177% 0.013% 0.6%

1000 2.195% 2.179% 0.016% 0.8%

Table 2: Mutation rate µ1 by which 95% of runs lost peak 1.

tion of the simulation (compared to 95% for peak 0). At this
mutation rate, early loss of peak 0 appears to be a condition
for survival-of-the-flattest. Loss of peak 0 is then followed
by one of two events: either peak 1 is lost relatively quickly
(within 200 generations) or it is maintained for the duration
of the simulation. The fate of the population after loss of
peak 0 is therefore dependent on whether or not it is able to
quickly converge on peak 1. Figure 3(a) shows (at this mu-
tation rate) that when peak 0 is not lost early, the number of
generations taken to lose peak 0 is distributed approximately
evenly up to 10,000 generations.

The mutation rate corresponding to 95% of the runs hav-
ing lost the lower, flatter peak (peak 1) within 10,000 gen-
erations marks a point at which the latter transition (from
survival-of-the-flattest to the error catastrophe) is essentially
complete. This can be considered as another critical muta-
tion rate (or the error threshold). For a population of 100
individuals, this is at a per-base mutation rate of approxi-
mately 1.85% (table 2). Figure 3(b) shows the number of
generations taken to lose each peak at this mutation rate, for
each of the 2,000 runs with population size 100. It is an
apparent reversal of figure 3(a) but with 100% of the runs
having lost peak 0 within 200 generations. The population
has almost entirely lost the ability to localize to either peak.

Discussion
At high mutation rates, individuals with greater mutational
robustness can outcompete those with higher fitness. Pre-
vious studies have not found a relationship between popu-
lation size and the critical mutation rate, at which there is

a phase transition from survival-of-the-fittest to survival-of-
the-flattest (Comas et al., 2005). However, the results of the
current study suggest that population size does have an ef-
fect on the size of mutation rate that can be tolerated before
the population loses the fittest and the flattest peaks, and that
this is particularly noticeable in populations with 100 indi-
viduals or less. As shown in figure 2, the size of mutation
rate at which each peak is lost for increasing population sizes
can be approximated by an exponential function. One pos-
sible reason for this is that small populations are more sus-
ceptible to stochastic variation due to random genetic drift
(Comas et al., 2005; Hartl and Clark, 2007); small popula-
tions with relatively large genomes cannot explore the en-
tire neutral space of the landscape. Consequently, quasis-
pecies formation is difficult, and the fitness peaks may be
more easily lost. The dramatic reduction in critical mutation
rate observed for small populations has implications for lo-
cal extinction events in which there is a significant drop in
population size. Further work will be necessary to apply this
result to populations under threat of local extinction.

The dynamics of finite populations have very different
properties compared to those of infinite populations, for ex-
ample non-zero probability of extinction. The latter can be
a good approximation of the former if the size of popula-
tions is large. However, where a small population size is
fundamental to the issue of concern, as with the relation-
ship established empirically in this paper, and in any work
on extinction events (zero population size), such approxi-
mations break down. This situation is similar to statisti-
cal mechanics, where systems of large numbers of particles
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Figure 3: Transition from survival-of-the-fittest to survival-
of-the-flattest and subsequently to the error catastrophe.
Each point represents the number of generations it took to
lose the high, narrow peak (peak 0) and the number to lose
the lower, flatter peak (peak 1), in a single run of the GA
for population size 100. Where a peak was not lost within
10,000 generations, a value of -1 was assigned for that par-
ticular run of the GA: all points on the negative side of ei-
ther axis should be taken to have a higher value than 10,000.
(a) The mutation rate by which 95% of the runs had lost peak
0 within the duration of the simulation; just 52% of these
runs lost peak 1. This demonstrates that the transition from
survival-of-the-fittest to survival-of-the-flattest is essentially
complete. This can be considered as a critical mutation rate.
(b) The mutation rate by which 95% of the runs had lost
peak 1 within the duration of the simulation; 100% of these
runs lost peak 0. This demonstrates that the transition from
survival-of-the-flattest to the error catastrophe is essentially
complete, with the population having almost entirely lost the
ability to localize to either peak.

are approximated by laws derived for an infinite number of
particles. The relation between the two is asymptotic and
rooted in the law of large numbers. In fact, one can ob-
tain equations for infinite populations from stochastic equa-
tions for finite populations by taking their expected value
with respect to a probability measure on the population sizes
m ∈ {0, 1, . . .}. The dynamics of finite populations can be
described by stochastic differential equations. In particu-
lar, branching processes have been used to study the popu-
lation dynamics of populations with variable (random) finite
size (Jagers, 1975). The dynamics of finite populations have
also been studied using the Moran process (Moran, 1962;
Nowak, 2006). This work establishes an important empir-
ical relationship between population size and critical mu-
tation rate; the development of a corresponding theoretical
model deserves further investigation.

Previous studies have defined the critical mutation rate to
be the midpoint between the highest mutation rate at which
there is survival-of-the-fittest, and the lowest mutation rate
at which there is survival-of-the-flattest (Wilke et al., 2001;
Comas et al., 2005). However, the results of this study
clearly show that there is a transition from survival-of-the-
fittest to survival-of-the-flattest and subsequently to the error
catastrophe (figure 3).

Conclusion
This study investigated whether or not there is a relationship
between population size and the size of mutation rate that
can be tolerated before fitter individuals are outcompeted by
those that have a greater mutational robustness (the critical
mutation rate). The results show that the sizes of mutation
rate at which the high, narrow peak and the lower, flatter
peak are lost for increasing population sizes can be approx-
imated by an exponential function. The effect of population
size on the size of mutation rate that can be tolerated be-
fore the population loses the fittest and the flattest peaks is
particularly noticeable in small populations with 100 indi-
viduals or less. This provides new insight into the factors
that can affect survival-of-the-flattest in small populations,
and has implications for populations under threat of local
extinction. Other factors, such as sequence length and dis-
tance between peaks, may well have a significant influence
on both critical mutation rate and population sizes that can
withstand specific rates of mutation. It will be beneficial to
investigate this in the future, as well as to construct a the-
oretical model (whether based on differential equations or
not) that can replicate the exponential relationship between
critical mutation rate and population size, found here by ex-
periment, for low population sizes.

In addition, there is clear evidence for a continuum of
mutation rates representing a transition from survival-of-the-
fittest to survival-of-the-flattest. This identifies a critical mu-
tation rate by which the population has a 95% likelihood of
losing the higher peak.
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