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Abstract

The evolution of naturalistic, embodied agents and be-
haviours has been a long-standing goal of Artificial Life
since the initial, impressive work of Karl Sims. Incremen-
tal evolution has been used extensively to improve the qual-
ity of evolutionary search in many complex, non-linear prob-
lem spaces. This work sets out to disambiguate the lexi-
con around incremental evolution, advocating the term en-
vironmental complexification to represent the complexifica-
tion of the problem domain. We then go on to analyse var-
ious complexification strategies in a structured, complexifi-
able and yet simple environment: a 3D agent-based obsta-
cle task. We divide the strategies conceptually into homo-
geneous and heterogeneous; homogeneous strategies expose
successive generations of the population to a single or tightly
clustered range of objective functions while heterogeneous
strategies present many, covering the range of complexity.
It was found that widely-used homogeneous complexifica-
tion techniques, for example direct presentation of difficult
tasks or linearly-increased difficulty, fail due to either loss-of-
gradient or temporally-local over-fitting (analogous to catas-
trophic forgetting in neural systems). Heterogeneous meth-
ods of complexification (including oscillatory strategies) that
eliminate these issues are devised and tested. The heteroge-
neous category outperforms the homogeneous in all metrics,
establishing a much more robust approach to the evolution of
naturalistic embodied agents.

Introduction
The evolution of naturalistic, embodied agents and be-
haviours has been a long-standing goal of Artificial Life
since the initial, impressive work of Karl Sims. We are in-
terested in evolving generalised behaviours rather than those
that succeed in only a specific or narrow range of parame-
ters: for example in agents able to climb over arbitrary ob-
stacles rather than just those of a specific (maximal or other)
height. It may appear desirable to evaluate each individ-
ual in each generation on all combinations of parameters for
all behaviours, but this approach is infeasible as the number
of combinations scales exponentially. We are therefore in-
terested in evolutionary approaches in which each agent is
evaluated on a small subset of parameters, in this paper on a
single value for a single behaviour, and yet result in agents

able to perform over the full range of parameters, for ex-
ample by having evolved generalised behaviours rather than
ones that work only in a specific or narrow range of param-
eters.

Incremental evolution has been used extensively to im-
prove the quality of evolutionary search in many complex,
non-linear problem spaces. This work sets out to disam-
biguate the lexicon around incremental evolution, advocat-
ing the term environmental complexification to represent
the complexification of the problem domain as described
above. We then seek to identify and objectively compare
the strengths and weaknesses of homogeneous and hetero-
geneous strategies for complexification of a problem domain
when using incremental evolution. In homogeneous com-
plexification strategies, for any short sequence of successive
generations the population is exposed to a single or tightly
clustered range of objective functions, while heterogeneous
strategies present many, covering a range of complexity.

Incremental Learning in Evolutionary Systems Inman
Harvey’s SAGA paradigm, motivated by evolution in the nat-
ural world, set the stage for the computational use of incre-
mental evolution by providing an evolutionary mechanism
which allows an evolving species to maintain, at least the-
oretically, most if not all evolutionary pathways as poten-
tial candidates for exploration, no matter how converged the
population has become to a single point in genotype space
(Harvey, 1992, 1997). Once a SAGA algorithm is imple-
mented, objective functions can be changed and the pop-
ulation can be expected to adapt to its new circumstances
by traversing neutral networks in genotype space (Harvey,
1997, 2001). The requirements for the successful implemen-
tation of a SAGA-type incremental process are straightfor-
ward: inclusion of mutation as a genetic operator, smooth
fitness landscapes and a redundant (high-dimensional) geno-
type to phenotype mapping which permits neutral networks
- interconnected regions of equivalent fitness - to percolate
through genotype space. Note that the term incremental evo-
lution is used in a sense which implies continued change,
development or acquisition of domain knowledge by the al-
gorithm over time. Where there is a gradual increase in dif-



ficulty of objective function, we prefer the term environmen-
tal complexification as mentioned in (Mouret and Doncieux,
2009). The label incremental evolution is also applied where
intermediate solutions are moved to a new objective domain;
this case we also consider a flavour of environmental com-
plexification, a point we explain in more detail below.

Some of the earliest work which uses the environmental
complexification approach directly is that of Gomez who (in
addition to discrete, staged evolution over subtasks) gradu-
ally increased the speed of prey in a pursuit-avoidance sim-
ulation where neural networks were evolved to control sim-
ulated predators (Gomez and Miikkulainen, 1997). This
work showed a very large performance gain by using the
incremental approach. The work also identified an interest-
ing adaptive approach where complexification is dependent
upon agent performance at the current level of complex-
ity. Mouret introduced a more general approach to reward-
ing sub-task performance than the hand-designed staged
approach common until this point (Mouret and Doncieux,
2009). Complex agent behaviour was evolved incrementally
in a two-dimensional task in (Robinson et al., 2007) where
agents in a discrete world were evolved to navigate a hos-
tile environment by avoiding and building bridges over in-
creasingly challenging obstacles. Environmental complexi-
fication was used to evolve swarm robots in (Kadota et al.,
2012), although the complexification chosen constituted ar-
bitrary, discontinuous changes to the agents’ environment
and not a smooth transition over a range of difficulties.
Notwithstanding, once again the incremental approach de-
livered a much higher rate of success in the given task (co-
operatively foraging for food in a two-dimensional environ-
ment). Oh et al. evolved controllers for unmanned aerial
vehicles first using a non-incremental strategy. This strat-
egy was found to perform badly as more constraints were
added into the objective function so an incremental, task-
subdivision strategy was used instead (Oh and Suk, 2013).

Categorisation of Incremental Learning Techniques
Barlow identified two classes of incremental training
schemes: functional incremental evolution and environmen-
tal incremental evolution (Barlow et al., 2004). In this defi-
nition, functional approaches parameterise fitness functions
to increase the apparent difficulty of tasks toward the de-
sired level of complexity whereas environmental approaches
modify the environment around the evolving individuals
without modifying the fitness function, with the same ef-
fect. Sub-categories of incremental evolution identified by
Mouret in (Mouret and Doncieux, 2009) are staged evo-
lution, environmental complexification, fitness shaping and
behavioural decomposition. The most striking of these dis-
tinctions, common to both Barlow’s and Mouret’s work is
environmental complexification; this category is of particu-
lar interest as semantically it can encompass all of the other
categories identified and thus becomes synonymous with the

sense of incremental evolution where the problem is simpli-
fied and made progressively more difficult. Additionally, en-
vironmental complexification is the only category which ad-
equately encompasses co-evolutionary systems (which can
be seen as auto-complexification) which in turn are the nat-
ural precursors to open-ended evolutionary systems, the de-
velopment of which is an active area of research in the Arti-
ficial Life domain.

Incremental Learning in Neural Systems The idea of
incremental learning is not confined to evolutionary algo-
rithms; neural network research has also considered this
both as a problem (learning invariances piecewise) and as
a solution (tackling complex problems) for networks gener-
ally, outside of any particular training scheme. In the stan-
dard approach of using neural networks, training and appli-
cation are distinct phases: all training data are presented to
the network and the system learns the invariances and ab-
stractions in that data using some learning algorithm. Then,
this trained network is put to work on unseen data. This
method of presentation can make it difficult for the network
to adapt to new, unseen data at a later time and cause net-
works to suffer the phenomenon of catastrophic forgetting
(McCloskey and Cohen, 1989). In contrast to this, incre-
mental learning algorithms are designed to allow the neural
system to continually adapt to new information whilst max-
imising the information available in the network from pre-
vious training. This is an important concept for real world
applications as often data is not available all at once and
sometimes learning guides further exploration, meaning that
learning is a continuous process rather than a discrete ac-
tivity (Giraud-Carrier, 2000). One popular solution to the
catastrophic interference problem found in these incremen-
tal learning schemes is to rehearse either already known data
or pseudo-data representing the knowledge already in the
network, interleaved with training on new information. See
(French, 1999) for an overview and (Guajardo et al., 2010)
for an example of recent work using this technique.

Complexification Strategies As noted above, previous
work has successfully leveraged the power of incremen-
tal evolution through successive increases in environmental
complexity. However, attention has been focused solely on
the outcome and the particular strategies used to complexify
the environment have not been examined in detail. We assert
that a rigorous theoretical underpinning of complexification
is necessary both for the practical application of incremen-
tal evolution and the further elucidation of the interplay of
agent and environment in co-evolutionary settings which ul-
timately lead to unbounded evolutionary activity.

The naive strategy presents the most difficult task to the
evolving species at every opportunity. This straw man is un-
likely to be successful: it was the failing of this approach that
spurred the development of alternative, progressive strate-



gies, such as linearly increasing difficulty as time passes.
The linear approach has been used often to circumvent the
bootstrapping problem, one of the first attempts occurring in
(Gomez and Miikkulainen, 1997). This approach is a nat-
ural extension of human learning - start easy and then get
harder - and the simplicity of implementation and broad-
ness of potential application strengthen its appeal. Many
task decomposition strategies can also be considered as im-
plementations of this strategy (linear or at least monotonic
increase in complexity), albeit discrete rather than continu-
ous. Gomez also proposed an extension to the linear increase
in task complexity where difficulty is only increased when
the evolving species achieves a certain level of performance
against the current objective function. This interesting strat-
egy has not been developed in detail by others but we con-
sider it a good candidate for analysis as it enforces gradient
at every level of difficulty, potentially solving some or all of
the issues described in the introduction to this work.

Although not often described in previous work, random
presentation of different task complexities may also be use-
ful and finally, drawing upon ideas from incremental learn-
ing in neural systems, we propose a strategy of repeated pre-
sentation of earlier, simpler tasks in an evolutionary setting.
These strategies may have something to offer beyond linear
or adaptive monotonic changes in task complexity.

Hypotheses
We anticipate that homogeneous complexification strategies,
for example direct presentation of difficult tasks or linearly-
increased complexity, will perform poorly due to either loss-
of-gradient or temporally-local over-fitting (analogous to
catastrophic forgetting in neural systems). Heterogeneous
strategies are our proposed approach to overcoming forget-
ting, as an analogue of rehearsal, with smoothly changing
heterogeneous strategies, such as oscillatory strategies, also
overcoming the loss-of-gradient problem. For oscillatory
strategies, the current range of difficulties is from zero to the
amplitude of oscillation. A gradual increase of this range
may be expected to show improved performance. At very
low frequencies, such a strategy would degenerate to the ho-
mogeneous linear strategy, and at very high frequencies to
the random strategy. Thus, we propose the following hy-
potheses:

H1: Homogeneous strategies will fail to achieve good
coverage on the evaluation task.

H2: Heterogeneous strategies (with the possible excep-
tion of random) will achieve better coverage than homoge-
neous strategies.

H3: Heterogeneous strategies with a range of difficulties
increasing over time will outperform heterogeneous strate-
gies with constant range.

H4: A heterogeneous strategy using an oscillatory ap-
proach, as an analogue of rehearsal, will exhibit an optimal
frequency for any particular problem.

Method

The general setup of our experiment is designed to test the
above hypotheses in a task which provides a smooth fit-
ness landscape and neutrality in genotype space. We have
chosen the evolution of controllers for three-dimensional
agents as the platform, tasked with learning how to walk
and climb over an obstacle. The height of the obstacle rep-
resents the complexification parameter of the system; task
difficulty varies somewhat as obstacle height varies but the
ultimate objective for the agents is to deal with every possi-
ble obstacle - this is the most complex case. Thus, we can
assess which of many possible complexification strategies
(that is presentation of tasks of various difficulties) provide
the strongest gradient for the evolutionary system to climb
and the most robust final evolved agents.

A. The Physical Model In the tradition founded by (Sims,
1994) and continued by many others, we perform all exper-
iments on agents in a three-dimensional virtual world con-
sisting of collidable rigid bodies connected by powered con-
straints. Unlike Sims, our morphology is a fixed quadruped
which is controlled by a feed-forward three-layer perceptron
augmented by sinusoidal input. The cuboid quadruped torso
(length 0.2m) is supported by four limbs, each comprising
an upper and lower portion (length 0.075m). Constraints
with two degrees of freedom limit the motion of torso and
upper limb at the hips; constraints with one degree of free-
dom limit the motions of lower limb and upper limb at the
knee. See figure 1 for a visual representation. The range
of motion of each knee joint is limited from 0 to π/2 radi-
ans, so knees cannot bend outward. The maximum torque
that can be applied at any constraint is 0.5 N m. The ob-
stacle is situated 1m from the agent’s origin and extends to
infinity in x and for 0.05m in y. The height of the obsta-
cle is varied as described elsewhere. The physical simulator
used was ODE 0.12, using double-precision arithmetic, the
standard big-matrix step function and a step-size of 0.02s.
Coulomb friction was applied at contacts between the agent,
the obstacle and the ground plane with μ = 2.

B. The Control System The agent controller is modelled
by a standard three-layer feed-forward neural network with
12 hidden nodes. Networks receive 4 real-valued inputs in
addition to 12 joint-angle sensors. Inputs comprise two si-
nusoidal oscillators (sine and cosine, period 1 second), an
input describing the target location in relation to agent posi-
tion and orientation (difference between distance from target
to each ear, divided by distance between ears) and an up-
sensor which describes the orientation of the agent’s head
relative to the ground plane. Network updates are made syn-
chronously with physics integration. Each hidden node acti-
vation is a weighted sum of its inputs with a hyperbolic tan-
gent activation. Each output node activation is a weighted
sum of hidden nodes with a logistic activation function.



Figure 1: Visualisation of physical environment. Agent, ob-
stacle and target location are shown.

C. The Evolutionary Algorithm Individual genotypes
specify floating-point weights for the neural control system.
Initial values for the first generation are drawn from a uni-
form distribution x ∈ [−1, 1]. In each run, the evolutionary
simulation is progressed for 5000 generations using a pop-
ulation of 50 individuals. Individuals are evaluated for 20
simulated seconds and the objective function is defined as
the reduction in distance in the x-y plane to a target posi-
tion situated on the other side of the obstacle. At each new
generation, individuals are scored according to the objective
function and ranked in order of fitness. The lower half of the
population is replaced with mutated, crossed-over variants
of the upper half. Single-point crossover is implemented at
a random point on the genotype and crosses the current par-
ent individual with another random individual from the best
half of the population (possibly itself). Mutation occurs on
average twice per genotype and consists of adding a value
drawn from a Gaussian distribution with σv = 1 and μ = 0.

D. The Experimental Setup Sixteen possible strategies
for environmental complexification have been identified and
tested. Each of these strategies modifies the height of the
obstacle in the environment for the current generation of the
species. In every case the maximum height of the obstacle,
τ, is 0.1m. The height function h for generation G and wave-
length λ is defined for each strategy as follows:

1. Direct presentation of environment with complexity τ at
every generation: h(G) = τ (Strategy 1)

2. Presentation of a randomly complex environment at each
generation, with complexity drawn from a uniform distri-
bution between 0 and τ: h(G) = random(0, τ) (Strategy
2)

3. Gradual complexification of the environment, with com-
plexity interpolated linearly between 0 and τ from gener-
ation 0 to generation 4000 and fixed at τ from generation
4001 to 5000 (Strategy 7):

h(G) =

{
tG

4000 , G < 4000,
τ otherwise

4. Oscillating complexification of the environment (λ = 50,
100, 200, 400 generations), with complexity following a
sinusoidal increase and decrease over wavelength λ with
maximum amplitude τ (Strategies 3, 4, 5 and 6):

h(G, λ) = τ
1 + sin( 2pG

l
− p

2 )
2

5. Oscillating complexification of the environment as above,
with maximum amplitude interpolated linearly between 0
and τ from generation 0 to generation 4000 and fixed at τ
from generation 4001 to 5000 (Strategies 8, 9, 10 and 11):

h(G, λ) =

{
tG

4000

1+sin( 2pG
l
− p

2 )

2 , G < 4000,

τ
1+sin( 2pG

l
− p

2 )

2 otherwise

6. Adaptive modification of 3, where h is instead increased
by 1% of τ when the population’s average fitness has in-
creased or remained the same and otherwise decreased by
1% of τ, while being kept in the range [0, τ]. (Strategy 12)

7. Adaptive modification of 5 where the value multiplying
the oscillator is instead increased by 1% of τ when the
population’s average fitness has increased or remained the
same and otherwise decreased by 1% of τ, while being
kept in the range [0, τ]. (Strategies 13, 14, 15 and 16).

Results
Table 1 shows that no homogeneous complexification strat-
egy (direct, linear or adaptive) was able to achieve success
on all task difficulties, in any experimental run. In contrast,
all heterogeneous strategies did. The adaptive oscillating
(λ=50) strategy achieved 100% success in 20% of runs and
95% success in 48% of runs.

Figure 2 shows a complete view for each strategy, with
λ=50 selected for each oscillating strategy and each strat-
egy’s 100 runs sorted along the horizontal axis by propor-
tion of successful evaluations (shown on the vertical axis).
Note that we are primarily interested in the upper portion of
this graph, that is in those populations able to complete the
task at most obstacle heights. The adaptive strategy gener-
ated fewer populations than the linear strategy, successful on
fewer than 50% of evaluations (over the full range of obsta-
cle heights) but of greater interest is that it generated only a
comparable number of populations successful on more than
90% of evaluations. The random strategy, whilst better than



Figure 2: Performance of various strategies, 100 runs per strategy sorted best to worst.

Number Strategy
% runs with
success of at

least:
95% 100%

Homogeneous Strategies
1 Direct 0% 0%
7 Linear 1% 0%

12 Adaptive 2% 0%
Heterogeneous Strategies

2 Random 13% 5%
3 Simple Oscillating (λ=50) 21% 11%
4 Simple Oscillating (λ=100) 16% 7%
5 Simple Oscillating (λ=200) 17% 8%
6 Simple Oscillating (λ=400) 10% 2%
8 Increasing Oscillating (λ=50) 39% 16%
9 Increasing Oscillating (λ=100) 30% 14%

10 Increasing Oscillating (λ=200) 30% 12%
11 Increasing Oscillating (λ=400) 29% 10%
13 Adaptive Oscillating (λ=50) 48% 20%
14 Adaptive Oscillating (λ=100) 44% 16%
15 Adaptive Oscillating (λ=200) 26% 9%
16 Adaptive Oscillating (λ=400) 31% 9%

Table 1: Number of runs achieving success on 95% and
100% of obstacle heights.

Figure 3: Aggregate success rate over all obstacle heights
for various strategies, sorted by median success rate. Each
evolved population was evaluated on the task at heights 0%,
1%, ... 100%. (See Table 1 for description of the numerical
labels.)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 é é é é é é é é é é é é é é é

2 ç é é é é é é é é é é é é é é

3 ç ç ç ç é é é ç é é

4 ç ç ç ç é é é ç é é

5 ç ç ç ç é é é ç é é

6 ç ç é é é ç é é é é é é é é

7 ç ç é é é é é é é é é é é é é

8 ç ç ç ç ç ç ç ç ç ç ç ç

9 ç ç ç ç ç ç ç ç ç é

10 ç ç ç ç ç ç ç é ç é é

11 ç ç ç ç é é ç é é

12 ç ç é é é ç é é é é é é é é

13 ç ç ç ç ç ç ç ç ç ç ç ç ç

14 ç ç ç ç ç ç ç ç ç ç ç ç

15 ç ç ç ç é ç é é

16 ç ç ç ç é ç é é

Table 2: Significance table showing one-tailed statistical re-
lationship between strategies, p < 0.05. Arrows indicate sta-
tistical dominance of one strategy over another (significantly
higher median value). Statistical test used was the Mann-
Whitney U-test.

all homogeneous strategies, is by far the worst method of
the heterogeneous strategies. In turn, the simple oscillating
strategy is outperformed by the increasing oscillating and
adaptive oscillating strategies.

Figure 3 shows a box plot of successful evaluations (%)
for each strategy (with whiskers to 1.5 interquartile ranges
below and above the lower and upper quartiles), complete
with a range of wavelengths (50, 100, 200 and 400 gen-
erations). Mann-Whitney U tests were performed to ex-
amine significant differences in median number of evalua-
tive successes between strategies and within strategies (by
varying wavelength). In table 2, a left arrow indicates that
the strategy corresponding to the row number has a signifi-
cantly higher (p < 0.05) median success rate than the strat-
egy corresponding to the column number (and an up arrow
vice versa), shown particularly clearly by strategies 8 and
13. Within each of the increasing and adaptive oscillating
strategies, the median number of successful evaluations was
found to be significantly higher (p < 0.05) for strategies with
wavelengths of 50 to 100 generations when compared to
the same strategy with four times the wavelength or higher.
Within the simple oscillating strategy, the long wavelength
(400 generations) produced a significantly lower median (p
< 0.05) than shorter wavelengths (50, 100, 200 generations).

Strategies which oscillate showed the best performance.
We found no significant difference in median between the
increasing and adaptive oscillating strategies at equal wave-
lengths. We found that either a linear or an adaptive in-
crease in maximum amplitude over the training time per-
formed significantly better than simple oscillation. For both

increasing oscillating and adaptive oscillating the two lower
wavelengths (50 and 100 generations) showed a significantly
higher (p < 0.05) median number of successful evaluations
than the simple oscillating strategies at all wavelengths.

On average, the adaptive strategy performed significantly
better than the direct, linear and random strategies, and sig-
nificantly worse than every oscillatory strategy (except the
simple oscillating strategy at wavelength 400 for which we
found no significant difference).

The linear strategy resulted in a significantly higher me-
dian number of successful evaluations than the direct and
random strategies (even though the random strategy pro-
duced more highly fit populations from many more runs)
and a significantly lower median than all other strategies.

On average, the random strategy performed significantly
worse than all other strategies except for the direct method,
which was significantly worse than all other strategies.

In order to determine whether the poor results of the linear
strategy is due to either evolutionary loss or failure to gain
we determined the proportion of successful evaluations at
each obstacle height throughout the evolutionary progress,
for each strategy. All strategies achieved 8% success at all
obstacle heights, with the exceptions of direct (for which
obstacle height is always 100%) and adaptive (low coverage
at high obstacle height). The linear strategy achieved more
successful evaluations than the simple oscillating strategy
at all wavelengths during the evolutionary phase, indicating
that its ultimate failure is due to evolutionary loss rather than
a failure to gain. Only 10% of the final populations from
linear runs contained an individual able to walk to the tar-
get with no obstacle, compared to at least 69% for the in-
creasing and adaptive oscillating strategies. Figure 4 shows
the performance of the linear strategy and the three oscilla-
tory strategies of wavelength 50 generations, against obsta-
cle height, during evolution.

As in figure 3, figure 5 shows the number of successful
evaluations for each strategy, but drawn only from those runs
able to reach the target with no obstacle (that is eliminating
those runs which experienced the greatest evolutionary loss).
It shows that in these cases, linear performance has a range
comparable to the simple oscillatory strategies and a median
comparable to the increasing and adaptive oscillating strate-
gies.

To investigate the dependency of success rate on oscil-
latory frequency we evaluated the simple, increasing and
adaptive oscillating strategies across as range of wave-
lengths from 2 to 10000 generations; figure 6 demonstrates
this relationship. As wavelength approaches zero, the pro-
portion of successful evaluations approaches that of random.
As wavelength approaches total evolutionary time (number
of generations), the proportion of successful evaluations ap-
proaches that of linear. Between these points, it can be seen
that for each strategy there is an optimal wavelength (for the
current algorithm, around 50-100 generations).



Figure 4: Strategy performance against obstacle height dur-
ing evolution.

Figure 5: Success rate over all obstacle heights for vari-
ous strategies (only aggregates runs which solved the task
at zero-height). (See Table 1 for description of numerical
labels; order preserved from Figure 3.)

Figure 6: Strategy performance (% success) against wave-
length for oscillating strategies.

Discussion

It is clear from the results presented above that there is a
strong distinction between the homogeneous and heteroge-
neous strategies. No homogeneous strategy achieved 100%
coverage of the evaluation task in any run (Table 1) whereas
all heterogeneous strategies did. Within the homogeneous
category, the trivial, direct method of presentation was by
far the least successful (Figures 2 and 3). The linear strat-
egy was more successful but the best strategy in this cate-
gory was the adaptive strategy. The poor performance of
the homogeneous category can be explained by evolution-
ary forgetting: these strategies have either lost evolutionary
gradient and drifted away from any early successes (linear)
or over-specialised on later parts of the problem (adaptive).

The heterogeneous strategies performed better than the
homogeneous group: the most successful strategies we ex-
plored all made multiple presentations of easier tasks at later
stages of the evolutionary run, at the expense of fewer con-
secutive presentations of very similar tasks. These strate-
gies all performed well at the hardest task and had the best
generalisation performance over the whole range of tasks,
suggesting that our hypothesis has merit.

The random strategy is the least successful strategy in this
category. This may be due to the same problem of gradient
loss as in the homogeneous group. As found in the homo-
geneous group, the linear and adaptive modifications of the
oscillating strategy showed the best performance of all; the
slow increase in task difficulty maintains a strong evolution-
ary gradient and the cyclical nature of task presentation con-
solidates earlier gains and causes the evolving population to
prefer generalised solutions abstracted over the whole prob-
lem domain.

This consolidation is dependent on the frequency of re-
presentation of earlier, or easier, parts of the task. When
investigating this frequency, it can be seen that a clear opti-
mum exists in the frequency domain where cyclical strate-
gies are able to maximise this consolidation without losing
gradient. This optimum is likely to be problem-specific and
a range of values should be explored for any given task.
However, in the limit of wavelength, that is at very low
and very high frequencies, it can be seen that the perfor-
mance of the evolving populations begins to approximate,
for low and high frequencies respectively, the linear and ran-
dom strategies. This offers an abstract insight into the un-
derlying mechanism at work - the maintenance of selective
pressure and whole-task capability. As these components
reduce in effectiveness due to the change in wavelength, so
the oscillating strategies degenerate into the simpler strate-
gies described above. The successful cases are those where
environmental change is fast enough to induce a generalisa-
tion in the agent’s approach to the task but slow enough to
prevent catastrophic loss of gradient when evaluating partial
solutions.



Conclusions
The points made in the discussion section support our hy-
potheses. The homogeneous strategies showed weak perfor-
mance on the evaluation task, with no strategy achieving full
coverage in any run. Conversely the heterogeneous strate-
gies, including surprisingly the random strategy, all achieved
full coverage in some runs. Those heterogeneous strategies
with a range of difficulties increasing over time (increasing
and adaptive oscillating) outperformed the simple (constant
range) oscillating strategies, showing a much higher propor-
tion of successful runs. Finally, we demonstrated that oscil-
lating strategies do exhibit an optimal frequency.

Complexification strategies for incremental evolution of-
fer a powerful mechanism for adaptive problem solving.
However, this power comes at a price: it is easy to lose in-
formation learned earlier in the process. In order to fully ex-
ploit this power appropriate complexification strategies have
to be realised in order to drive populations along desirable
adaptive pathways. There are many options for formulating
these strategies: much previous work has involved, in one
manner or another, a simplification of the objective function
and then a progressive complexification as time passes. In
this work we found that many strategies encounter loss-of-
gradient or over-fitting problems. We present a solution in
the form of heterogeneous complexification strategies which
combine solutions to those problems to deliver robust pop-
ulations. Our approach can be translated to many scenarios
where progressive complexification is used to guide an in-
cremental evolutionary process; further exploration of the
limitations and advantages of heterogeneous complexifica-
tion within different problem domains would be useful in
order to generalise these conclusions. Additionally, the os-
cillating strategies exhibited an optimal wavelength for re-
presentation. It is unclear whether this optimum is task-
dependent or whether there is an underlying principle and
optimal wavelength for this type of training; this question
also merits further work.

Finally, we would advise that in general while a ran-
dom presentation of subtasks or objective difficulty levels
is preferable to a linear increase, as a minimum guideline an
increasing heterogeneous complexification strategy should
be used. This rehearsive, cyclical approach to presenta-
tion not only maintains evolutionary gradients but also pro-
motes generalisation amongst the evolving populations from
subtask-specific adaptation to performance across the super-
task.
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