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Abstract

Horizontal gene transfer (HGT) enables segments of DNA
to be transferred between individuals in a population in ad-
dition to from parent to child. It is a prominent process in
bacterial reproduction. Existing in silico models have suc-
ceeded in predicting when HGT will occur in evolving bac-
terial populations, and have utilised the concept of HGT in
evolutionary algorithms. Here we present a genetic algorithm
designed to model the process of bacterial evolution in a fit-
ness landscape in which individuals with greater mutational
robustness can outcompete those with higher fitness when a
critical mutation rate (CMR) is exceeded. We show that the
CMR has an exponential dependence on population size and
can be lowered by HGT in both clonal and non-clonal popu-
lations. A population reproducing clonally has a higher CMR
than one in which individuals undergo crossover. Allowing
HGT only from donors with a non-zero fitness prevents HGT
from lowering the CMR. In all cases the change in CMR with
population size is greater for populations with 100 individ-
uals or less. This represents a significant stage in bacterial
evolution; smaller populations will exist when a population
is founded or near to extinction. This will also be the case
if a subset of the population is considered as a population
in its own right, for example, the sub population of resistant
bacteria that emerges due to the introduction of antibiotic re-
sistance genes. Understanding the effect of mutation at such
a critical stage is key to predicting the likely fate of a popula-
tion.

Introduction
It is estimated that up to 32% of the bacterial genome has
been acquired by horizontal gene transfer (HGT) (Koonin
et al., 2001), during which segments of genetic material are
transferred between individuals as opposed to inherited from
a parent (vertical gene transfer) (Mozhayskiy and Tagkopou-
los, 2012). It was first identified in 1928 when it was noted
that virulence could be passed horizontally from virulent to
non-virulent strains of Streptococcus pneumoniae via trans-
formation (Griffith, 1928; Ravenhall et al., 2015). HGT has
also been shown to occur via transduction and conjugation
(Tatum and Lederberg, 1947; Zinder and Lederberg, 1952;
Jones and Sneath, 1970), increasing genetic diversity in bac-
teria above the level that would be accessible via mutation

alone (Nielsen et al., 2014). The majority of HGT events
lead only to minimal changes in recipient fitness, an ex-
ception being antibiotic resistance; the presence of antibi-
otics leads to strong positive selection for resistance genes
(Nielsen et al., 2014). Advances in whole genome sequenc-
ing have enabled the amount of genetic material acquired
via HGT to be quantified; Ochman et al. (2000) review a
distribution of estimates of between 0 and 12.8% of the
genome designated as horizontally acquired in a variety of
species, while Cooper (2007) gives an estimate of 1× 10−4

genes transferred horizontally per cell per generation in Es-
cherichia coli.

In a similar manner to mutation, HGT occurs at low fre-
quencies and depends on conferred fitness gains to persist
(Kimura and Ohta, 1969; Johnsen et al., 2011). However,
the rate HGT happens can be orders of magnitude higher
than per gene point mutations (Puigbò et al., 2014; van Dijk
and Hogeweg, 2015). For example, mutation rates in wild
type E. coli are estimated to be between 2 × 10−8 and
2× 10−10 per generation, per base pair (Drake et al., 1998;
Mozhayskiy and Tagkopoulos, 2011) and 3×10−7 per gene
(Mozhayskiy and Tagkopoulos, 2011, 2012). Experimen-
tally observed HGT rates between bacteria in natural en-
vironments vary between 10−7 and 10−11 per generation,
per cell (Baur et al., 1996; Mozhayskiy and Tagkopoulos,
2012) and in some cases the rate can go as high as 10−3 to
10−1 (McDaniel et al., 2010; Mozhayskiy and Tagkopoulos,
2012). Bacteria can increase their mutation rate in response
to stress (Krašovec et al., 2014); the fact that mismatch-
repair-deficient cells also have significantly increased re-
combination and HGT rates suggests there is a strong cor-
relation between HGT, stress, and adaptation (Raz and Tan-
nenbaum, 2010).

Evolving Prokaryotic Populations: Modelling
Horizontal Gene Transfer

The gene content of microbes can change in a relatively
short amount of time (van Dijk and Hogeweg, 2015). In
silico evolution enables each parameter to be tested indepen-
dently or in combination as a means of understanding the un-



derlying mechanisms of evolution dependent on parameters
such as population size, generation time, HGT frequency,
and change in relative fitness of recipient cells (Hindré et al.,
2012). For example, modelling has facilitated prediction of
HGT detectability in bacterial populations growing both in
vitro and in vivo (Nielsen et al., 2014).

Microbial GA was one of the first genetic algorithms
(GAs) to be inspired by bacterial evolution (Harvey, 1996,
2011; Tomko et al., 2013). During the reproduction step, if
two individuals picked at random to be parents are called A
and B, whilst the offspring is called C, then C will replace
the weaker one of the parents. If C is the product of sex-
ual recombination between A and B, however, then ~50%
of C’s genetic material is from A, and ~50% from B. This
is indistinguishable from B remaining in the population, but
with ~50% of its original genetic material replaced by ma-
terial copied and passed over from A; it can be considered
as an excessive case of HGT from A (the fitter) to B (the
weaker). The Pseudo-Bacterial GA (PBGA) (Nawa et al.,
1997) and the Bacterial Evolutionary Algorithm (Nawa and
Furuhashi, 1998) both use a genetic operator called the ‘Bac-
terial Operator’ (Tomko et al., 2013). This operator mimics
gene transduction, the process by which bacteria can hori-
zontally transmit parts of their genome via a viral vector. In
the Unconstrained Genetic Algorithm (Tomko et al., 2013),
HGT is done by the process of individuals swapping genes
as opposed to one gene overwriting another, ensuring the
frequency of genes remains constant. Within the reproduc-
tion step, the genotypes of each offspring are broken up and
put into separate locus categories known as “bags”. From
these pieces, a new population is constructed by randomly
choosing genes from each bag to emulate the process of
HGT. While in silico modelling of horizontal information
transfer has provided insight into the importance of HGT as
an evolutionary process, the role of HGT in conjunction with
mutation-selection balance (Kimura and Maruyama, 1966;
Bull et al., 2005), remains unclear.

Critical Mutation Rate: Horizontal Gene Transfer
and Mutation-Selection Balance
There is evolutionary pressure to evolve sequences that are
both fit and robust to mutation (Jones and Sneath, 1970;
Lenski et al., 2006; Sanjuán et al., 2007). At high muta-
tion rates, individuals with greater mutational robustness can
outcompete those with higher fitness, a concept known as
“survival-of-the-flattest” (Wilke, 2005); in terms of fitness
landscapes, narrow, high fitness peaks may be lost, while the
population remains on broader, lower peaks. At the optimal
mutation rate there will be survival-of-the-fittest, while the
CMR is the lowest mutation rate at which fitter individuals
are outcompeted by those with greater mutational robust-
ness. The higher the CMR, the greater the robustness of the
population as a whole. The CMR has been shown to have
an exponential dependence on population size in both hap-

loid (Channon et al., 2011) and diploid in silico populations
(Aston et al., 2013). This exponential relationship is main-
tained when the parameters of a genetic algorithm modelled
on the biological process of meiosis are set to ranges ap-
propriate for eukaryotic organisms (Aston et al., 2016). The
exponential relationship was identified by curve-fitting us-
ing R with a least squares method; it was found that the data
for population size and CMR could be approximated by an
exponential function, where y = A−B ∗ e−((m/C)D)(with
m being population size). Furthermore, increasing the num-
ber of genes and the length of each gene in each individual’s
genome to the appropriate range for the model plant Ara-
bidopsis thaliana lead to CMRs within one order of magni-
tude of existing measurements of biological mutation rate;
it has been demonstrated that, in a system in which an indi-
vidual’s fitness is dependent on the minimum fitness of its
n constituent genes, it is possible to input biologically re-
alistic parameter values for a specific eukaryotic organism
into the simulation model and produce a CMR within the
range of current biological estimates of mutation rate for
that organism (Aston et al., 2016). While the relationship
between population size and CMR has been established in
eukaryotes, its applicability to prokaryotes undergoing HGT
remains an open question.

Hypothesis 1
The exponential relationship between CMR and population
size means that much lower mutation rates are tolerated by
small populations. While bacteria are typically associated
with large population sizes, they will exist in much smaller
populations when the population is founded, near to extinc-
tion, or if a subset of the population is considered as a pop-
ulation in its own right. For example, the introduction of
antibiotic resistance genes into a population via HGT will
lead to a sub population of resistant bacteria. We hypothe-
sise that the exponential relationship previously observed for
eukaryotes will also be observable for populations subject to
both vertical and horizontal gene transfer. Ochoa and Har-
vey (1998) observed that recombination can push the popu-
lation in a genetic algorithm over the error threshold when
the mutation rate is high, inducing error catastrophe; it is ex-
pected that increasing the amount of donor sequence trans-
ferred to a recipient individual will also lead to a reduction
in the CMR.

Hypothesis 2
Experimentally observed HGT rates between bacteria in nat-
ural environments vary between 10−7 and 10−11 per genera-
tion, per cell (Baur et al., 1996; Mozhayskiy and Tagkopou-
los, 2012); in some cases the rate can go as high as 10−3

to 10−1 (McDaniel et al., 2010; Mozhayskiy and Tagkopou-
los, 2012). The rate of HGT will determine how much ex-
change of genetic material occurs within one generation; it
may be possible for one bacterial cell to receive genetic ma-



terial from more than one donor. In terms of a genetic al-
gorithm with a constant sequence length, it is possible that
the genetic material from one donor cell may overwrite the
genetic material from another donor cell. Transfer of large
segments of sequence may increase the chance of an over-
lap in donor sequences overwriting the recipient’s sequence.
We therefore hypothesise that increasing the rate of HGT by
increasing the number of donor individuals that transfer part
of their sequence via HGT to one recipient per reproduction
will have a smaller effect on the CMR than increasing the
length of the sequence transferred; it is expected that the in-
creased possibility of donor sequences overwriting previous
donor sequences will counteract the effect of increasing se-
quence length. It should be noted that over one complete
generation an individual may be selected as a donor more
than once and may therefore transfer its genetic material to
multiple recipients (see Simulation Model).

Hypothesis 3
Bacteria reproduce clonally rather than exchange their
genetic material via recombination during reproduction
(Tatum and Lederberg, 1947). Ochoa and Harvey (1998)’s
observation that recombination can force the population over
the error threshold at high mutation rates suggests that re-
moving the recombination step and allowing the popula-
tion to reproduce clonally will have the opposite effect. We
therefore hypothesise that removing recombination will lead
to an increase in the CMR. The introduction of clonality is
not expected to affect the influence of population size on the
CMR therefore we hypothesise that the exponential relation-
ship will be maintained.

Hypothesis 4
Donor individuals are either the result of crossover between
the two fittest individuals (of the three chosen during the
reproduction step) or clonal reproduction of the fittest indi-
vidual (see Simulation Model). Consistent with the model
used in previous studies (Channon et al., 2011; Aston et al.,
2013, 2016), the simulation model does not allow individual
death; individuals can have a fitness of zero but will still be
included in the reproduction step. This means it is possible
for an individual with zero fitness to be a HGT donor, with
the potential to reduce the fitness of a recipient on one of the
peaks. To determine the effect of this on the CMR, the donor
individual must come from the subset of the population on
the peaks. We hypothesise that only allowing donors to have
non-zero fitness will increase the CMR; this is expected to
be most significant for longer sequences. The exponential
relationship between population size and CMR is expected
to be maintained.

Simulation Model
The model used a two-peak fitness landscape (Figure 1),
with the height of peak 0 constant at 15 and the radius 2,

Figure 1: Two-peak fitness landscape, with one narrow
peak of high fitness (Peak 0), and one broader peak of lower
fitness (Peak 1). The fitness score is relative, and the width
and distance between the peaks are given in terms of Ham-
ming distance. Diagram adapted from Wilke (2005).

the height of peak 1 constant at 10 and the radius 5, and
the Hamming distance between the peaks set at 10 as per
previous studies (Channon et al., 2011; Aston et al., 2013,
2016). It should be noted that the model uses relative fit-
ness scores therefore the absolute value of the height of the
peaks is not important. Each individual was represented as
a single (haploid) sequence of alphabet size 4 (representing
the bases of DNA, i.e., A, C, G, and T) and length L; the
sequence space is therefore 4L. L was kept constant at 1000
bases (b). For simplicity, peak 0 was set to be all 0s and
peak 1 was randomly generated to be Hamming distance 10
away. Hamming distance is calculated by simply comparing
one sequnce with another, base by base. If the bases do not
match, the Hamming distance is incremented. Fitness values
were determined based on the Hamming distance of each in-
dividual from the top of each peak. The fitness value of an
individual relative to peak 0 was compared with its fitness
value relative to peak 1 and the highest of these selected to
give the individual an overall fitness value. The simulation
was initialised with half of the population on each peak and
run for a range of population sizes. The CMR was recorded
as the mutation rate at which 95% of 2000 runs lost peak 0
within 10,000 generations (as per (Channon et al., 2011; As-
ton et al., 2013, 2016)). The CMR was calculated for each
100 runs to produce 20 CMR values from which the mean
was calculated. Selection was based on fitness-dependent
tournament selection between selected parents. Three indi-
viduals were selected at random from the population. When
reproduction was non-clonal, two of the three selected indi-
viduals were chosen as parents in a single point crossover
which replaced the third individual with the resulting child.
In the case of clonal reproduction, the child was overwrit-
ten entirely by the fittest parent. The individual to be re-
placed was determined based on the fitnesses of the three
selected individuals: there was an equally small chance of



either of the two fittest of the three being replaced (25%),
and a larger chance of replacing the least fit. This ratio en-
sures that there is potential for any individual to be chosen
for replacement, allowing loss of the fittest peak. The use of
tournament selection ensures that selection is independent
of the precise shape of the landscape; it does not matter ex-
actly how much fitter one individual is compared to another,
tournament selection depends on the relative fitness. The
child was then allowed to receive a portion of a sequence
from a donor individual (HGT). The amount transferred was
kept constant during each experiment and set to a range of
amounts from 1 b quadrupling up to 256 b (0.1 - 25.6%
of the sequence). The section of the donor sequence to be
transferred was selected at random. The child sequence (the
recipient) was then overwritten with the section of donor se-
quence. This ensured sequences remained fixed in length
consistent with existing work (Channon et al., 2011; Aston
et al., 2013, 2016). Fixed sequence lengths also ensure that
one sequence is directly comparable to another in terms of
the simulation and fitness landscape defined in the paper.
The donor was either chosen randomly from the population,
or was selected from a subset of the population consisting of
individuals with non-zero fitness. The child was then subject
to one round of point mutation at a given per-base mutation
rate. These steps were repeated until each individual in the
population had been chosen exactly once to undergo repro-
duction (or there were less than three remaining to select);
this represents one generation. The rate of HGT was kept
constant (unless stated otherwise), with each individual in
the population subject to tournament selection with the pos-
sibility of being a HGT recipient once per generation. To
test the effect of varying the rate of HGT, the amount of the
sequence to be transferred was either kept constant at either
1 b (0.1%) or 16 b (1.6%) with the number of donor indi-
viduals per recipient set to equal 4, 16, or 32 (to allow for
the possibility of donor sequence to overwrite up to just over
half of the recipient sequence (32 transfers of 16 b)). Over
one complete generation an individual may be selected as a
donor more than once and may therefore transfer its genetic
material to multiple recipients.

Results
Horizontal Gene Transfer Reduces CMR in a
Population with Crossover
Figure 2 shows the relationship between population size and
CMR for a haploid in silico population both in the presence
and absence of HGT. The amount of genetic material trans-
ferred from donor to recipient was kept constant for the du-
ration of each run and set to equal from 1 b quadrupling up to
256 b. Individuals were 1000 b long therefore this represents
between 0.1% and 25.6% of the sequence transferred to a re-
cipient. It is apparent from Figure 2 that enabling HGT does
not affect the CMR if the size of the sequence transferred is
small (16 b or less). However, in agreement with Hypoth-

Figure 2: CMR plotted against population size for vary-
ing size of donor sequence transferred via HGT. Donor
individuals transferred between 1 b and 256 b of genetic ma-
terial (given in the legend) per reproduction. The exponen-
tial lines were obtained by curve-fitting using R with a least
squares method. Error bars represent +/- 95% confidence
intervals.

esis 1, transfer of longer segments of sequence lowers the
CMR. The exponential relationship is maintained, although
the relationship between CMR and population size is less
consistent for populations with approximately 300 individ-
uals and above when the size of the sequence transferred
reaches 25.6% of the donor sequence. Two factor ANOVA
indicates that the null hypothesis, that there is no significant
effect of population size and the amount of genetic material
transferred on the CMR, can be rejected (p=1.54 × 10−49,
F=165.9, df = 5).

Increase in the Rate of Horizontal Gene Transfer
Has Minimal Effect on the Relationship Between
Population Size and CMR
Figure 3 shows the relationship between population size and
CMR when the number of HGT donors per recipient indi-
vidual is increased. Each recipient received 0.1% or 1.6%
of the sequence from 4, 16, or 32 donors selected at ran-
dom from the population. Each individual in the popula-
tion had the potential to be a recipient once per generation.
The relationship between the CMR and population size is
maintained as the number of donors increases. Hypothesis
2 stated that increasing the rate of HGT by increasing the
number of donor individuals that transfer part of their se-
quence via HGT to one recipient per reproduction will have
a smaller effect on the CMR than increasing the length of
the sequence transferred; Figure 3 confirms this is the case.
Two factor ANOVA indicates that the null hypothesis, that



Figure 3: CMR plotted against population size for vary-
ing rate of HGT when 0.1% or 1.6% of the donor se-
quence is transferred. Recipient individuals received 1 b
or 16 b (0.1 - 1.6%) of genetic material from 4, 16, and 32
donors per reproduction (given in the legend). The exponen-
tial lines were obtained by curve-fitting using R with a least
squares method. Error bars represent +/- 95% confidence
intervals.

there is no significant effect of the number of HGT donors
per recipient on the CMR for each population size, can fail
to be rejected when the amount of the sequence transferred is
0.1% (p=0.548, F=0.606, df=2). However, when the amount
of the sequence transferred is 1.6%, the null hypothesis can
be rejected (p=0.003, F=6.62, df=2); varying the population
size and the number of HGT events has an effect on the CMR
for the longer length of sequence transferred that is minimal
but statistically significant.

Clonal Reproduction Increases the CMR

Figure 4 shows the relationship between population size and
CMR for a population reproducing clonally both in the pres-
ence and absence of HGT compared to the CMR for a popu-
lation reproducing with crossover (represented by the lower
results in Figure 4 and presented separately in Figure 2). In-
dividuals were subject to tournament selection before under-
going HGT, with the fittest of three individuals most likely
to replace the least fit to simulate clonal reproduction. The
amount of genetic material transferred from donor to recip-
ient was kept constant for the duration of each run and set
to equal from 1 b quadrupling up to 256 b, with individu-
als 1000 b in length. The relationship between population
size and CMR remained exponential when clonal reproduc-
tion was introduced. However, the overall magnitude of the
CMR was higher than that for the population with crossover.
This is in agreement with Hypothesis 3 which expected the
introduction of recombination to lead to an increase in the

Figure 4: Comparison of CMR plotted against popula-
tion size when reproducing clonally (upper curves) or
with crossover (lower curves). Donor individuals trans-
ferred between 1 b and 256 b of genetic material (given in
the legend, appended with C for clonal) per reproduction.
The exponential lines were obtained by curve-fitting using
R with a least squares method. Error bars represent +/- 95%
confidence intervals. Note the lower curves are taken from
Figure 2.

CMR. Two factor ANOVA indicates that the null hypoth-
esis, that there is no significant effect of population size
and the amount of genetic material transferred on the CMR
in a clonal population, can be rejected (p=2.82 × 10−40,
F=105.3, df=5). A comparison of the clonal and non-clonal
results for 16 b (the mid point of the range of lengths of se-
quence transferred) indicates that the null hypothesis, that
there is no significant effect of population size and clonal-
ity on the CMR, can be rejected (p=5.31× 10−15, F=350.3,
df=1).

Horizontal Gene Transfer from Donors with
Non-zero Fitness Increases CMR for Longer
Sequences in a Clonal Population
Figure 5 shows the relationship between population size and
CMR when individuals in a clonal population (C) or one un-
dergoing crossover select a donor for HGT either randomly
or from a subset of the population with non-zero fitness (+).
In each case, the exponential relationship between CMR and
population size is maintained. In agreement with Hypothe-
sis 4, allowing HGT to proceed in a clonal population only
with donors with non-zero fitness lead to an increase in the
CMR when the size of the sequence transferred was greater
than 16 b long; two factor ANOVA indicates that the null hy-
pothesis, that there is no significant effect of the restriction
on donors on the CMR for each population size in a clonal
population, can be rejected (p=3.02×10−08, F=69.3, df=1).



Figure 5: Comparison of CMR plotted against popula-
tion size for a population reproducing clonally (C) (up-
per curves) or with crossover (lower curves) with HGT
donors selected either randomly or by fitness (+). Donor
individuals transferred between 1 b and 256 b of genetic ma-
terial (given in the legend) per reproduction. The exponen-
tial lines were obtained by curve-fitting using R with a least
squares method. Error bars represent +/- 95% confidence in-
tervals. Note the overlap in results for 16 b and below, and
the lack of overlap for 64 b and 256 b (both clonal and non-
clonal). Also note the overlap in data for 64(+)C and 4(+)C,
and that all of the data for (+) is close together.

However, in a population with crossover, the null hypothe-
sis can fail to be rejected (p=0.789, F=0.073, df=1). As per
the case where donors were selected at random, introduc-
ing clonality to a population in which donors have non-zero
fitness lead to an increase in the CMR; the null hypothesis,
that there is no significant effect of population size and clon-
ality on the CMR, can be rejected (p=2.99×10−15, F=370.2,
df=1).

Discussion
Enabling a population of in silico individuals to transfer be-
tween 0.1% and 25.6% of their sequence to a recipient has
an effect on the CMR when longer sequences are transferred
(Figure 2); transfer of greater than 1.6% of the donor se-
quence to the recipient per reproduction lead to a decrease
in CMR. The exponential relationship between population
size and CMR is maintained with the addition of HGT; the
change in CMR with population size is greater for popula-
tions with 100 individuals or less. However, when the size
of the sequence transferred reaches 25.6% of the donor indi-
vidual, the relationship between CMR and population size is
less consistent for populations with approximately 300 indi-
viduals and above. Transfer of genetic information horizon-

tally effectively introduces an additional recombination step.
Recombination can push the population in a genetic algo-
rithm over the error threshold when the mutation rate is high
(such as when it is close to the CMR). HGT of longer se-
quences from the donor to the recipient will lead to a greater
proportion of the recipient consisting of donor sequence; the
increase in recombination pushes the population over the
CMR at a lower magnitude.

Figure 3 shows that increasing the number of HGT events
and therefore increasing the number of donors per recipient,
while keeping the amount of the sequence transferred con-
stant at 1 b, has no significant effect on the CMR. Increasing
the length of the sequence transferred to 16 b (the sequence
length above which there was a reduction in the CMR in Fig-
ures 3 and 4) and then increasing the number of transfers to
each recipient leads to a minimal (yet stastically significant)
reduction in the CMR. This is due to the fact that there is
no guarantee that, for example, a recipient receiving two 16
b sequences from two donors will have 32 b of new genetic
material within its sequence; the position of the sequence to
be transferred is selected at random from along the length of
the sequence therefore there may be an overlap. For short
sequences of only 1 b, while an overlap is less likely, when
an overlap does occur one sequence will completely replace
the other. The effect of increasing the length of the sequence
transferred via HGT observed in Figure 2 was not repeated
in Figure 3. It should be noted that while for each repro-
duction step there is one recipient and potentially multiple
donors, over one complete generation an individual may be
selected as a donor more than once and may therefore trans-
fer its genetic material to multiple recipients. An increase in
the rate of transfer may be of relevance to a biological en-
vironment where an increase in HGT leads to an abundance
of DNA to be taken up by recipient bacteria; in terms of the
simulation model, such an increase in the amount of DNA
transferred will have minimal effect on the CMR.

Keeping the number of HGT donors per recipient individ-
ual constant at 1, the relationship between population size
and CMR remained exponential when clonal reproduction
was introduced (Figure 4). The CMR increased in com-
parison to the CMR for reproduction with crossover in the
presence of HGT. Recombination can reduce the diversity in
a population and enhance fitness when the mutation rate is
low (Ochoa and Harvey, 1998). However, at higher mutation
rates (such as close to the CMR), it can lead to the population
being pushed over the CMR; the addition of HGT, which in-
volves information transfer between individuals in a similar
manner to recombination, was seen to lower the CMR in
Figure 2. Removal of the recombination step per individual
per reproduction by introducing clonality had the opposite
effect; individuals on peak 0 are less able to share genetic
information with individuals in parts of the fitness landscape
representing lower fitness when there is only HGT.

While transfer of genetic information between individu-



als in a population can be beneficial, it has the potential to
lead to the spread of genes that are detrimental to fitness. In
terms of the two-peak fitness landscape (Figure 1), an indi-
vidual on peak 0 transferring its sequence to a recipient with
zero fitness has the potential to lead to an increase in the
fitness of the recipient. Conversely, an individual with zero
fitness transferring its sequence to an individual on peak 0
may cause the recipient to lose peak 0 and therefore reduce
the CMR. While the effect on the fitness of the recipient is
dependent on the portion of the sequence transferred from
the donor, a donor on the top of peak 0 is more likely to in-
crease the fitness of a HGT recipient than a donor that is far
away from peak 0 in the landscape. Restricting HGT to a
subset of donors with non-zero fitness means that recipient
individuals only recieve genetic material from individuals on
peak 0 or peak 1; they will not undergo HGT with individu-
als that have lost both of the peaks. Without this restriction,
individuals from anywhere in the fitness landscape may be
picked as a donor as the simulation model enables individu-
als with zero fitness to be selected in the reproduction step;
it does not allow individual death. HGT only from donors
on the peaks prevents the reduction in the CMR observed
for transfer of long sequences in both clonal and non-clonal
populations (Figure 5). However, the restriction of donors
to those with only non-zero fitness only had a statistically
significant effect on the CMR for the clonal population.

Enabling genetic information to be transferred both ver-
tically and horizontally affects the magnitude of the CMR
at which survival-of-the-flattest occurs. While bacteria are
typically associated with large population sizes, they will
exist in much smaller populations when the population is
founded, near to extinction, or if a subset of the population
is considered as a population in its own right. Understand-
ing the effect of HGT on the CMR and the potential for
survival-of-the-flattest is crucial to understanding the likely
fate of bacterial sub populations or founding populations.
For example, a sub population of resistant bacteria that will
emerge due to introduction of antibiotic resistance genes
into a population via HGT may be unable to optimally repro-
duce above a CMR increasing exponentially with population
size. Further work will be required to enable development
of our in silico simulation model to predict the outcome of
a real biological population of evolving bacterial cells. This
will involve use of prokaryotic-length genomes made up of a
biologically realistic number of genes, of which a subset can
be transferred horizontally, to output CMRs that can then be
compared with existing mutation rates observed for bacte-
rial species; it is expected that biological mutation rates will
have evolved to be close to optimal, likely to be close to but
not exceeding the CMR. This will enable us to further re-
fine both the simulation model and its parameter values to
close the gap between artificial simulation and prokaryotic
evolution.
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