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Abstract. Social information can provide information about the pres-
ence, state and intentions of other agents; therefore it follows that the use
of social information may be of some adaptive bene�t. As with all infor-
mation, social information must be interpretable and relatively accurate
given the situation in which it is derived. In both nature and robotics,
agents learn which social information is relevant and under which circum-
stances it may be relied upon to provide useful information about the
current environmental state. However, it is not clear to what extent so-
cial information alone is bene�cial when decoupled from a within-lifetime
learning process, leaving evolution to determine whether social informa-
tion provides any long term adaptive bene�ts. In this work we assess
this question of the adaptive value of social information when it is not
accompanied by a within-lifetime learning process. The aim here is to
begin to understand when social information, here expressed as a form
of public information, is adaptive; the rationale being that any social in-
formation that is adaptive without learning will be a good base to allow
the learning processes associated with social information to evolve and
develop later. Here we show, using grounded neuroevolutionary arti�cial
life simulations incorporating simulated agents, that social information
can in certain circumstances provide an adaptive advantage to agents,
and that social information that more accurately indicates success con-
fers more reliable information to agents leading to improved success over
less reliable sources of social information.
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1 Social Information, Learning and Evolution

Social information can broadly be thought of as information derived from the
behaviours, actions, cues or signals of other agents [1]. As social information
necessarily involves the direct or indirect broadcasting of information in to the
public domain, it is sometimes known as (or con�ated with) public information
[2]. Here we assess whether the use of social information in populations of simu-
lated neuroevolutionary agents is adaptive when decoupled from within-lifetime



learning processes. Within-lifetime learning processes confer signi�cant adaptive
advantages to agents employing them, be it through the development of a set
of robust and �exible behaviours, the rapid adaptation to new environments or
circumstances, the quick incorporation of new information, or the guiding of the
evolutionary process itself [3]. The adaptive advantages of learning are partic-
ularly potent when social information is incorporated alongside innovation and
individual learning [4], resulting in social learning and potentially even cultural
evolution [5]. However, as bene�cial as within-lifetime social learning processes
are, it is unclear to what extent social or public information has an adaptive
bene�t when decoupled from these learning processes and evolution is left to
determine the value of social information. Is the incorporation of social informa-
tion alone enough to gain an adaptive advantage over non-social agents? Or are
learning processes necessary to allow social information to confer any bene�ts?
These are the questions that we address in this paper.

Social learning is seen widely in nature [6] in a range of species as diverse as
humans and nine-spined stickleback �sh [7]. The mechanisms and processes that
underpin social learning are themselves broad, ranging from teaching, imitation
and emulation to stimulus enhancement and exposure [8], with any of these
mechanisms potentially leading to the formation of traditions and cultures [5,9].
However, within each social learning category there is some dependence on who
information is obtained from, be it a teacher or which agent is unintentionally (or
intentionally) exposing an individual to new information. As social learning is
necessarily conformist, a poor social information model may result in the discov-
ery and propagation of sub-optimal behaviours [10]. Despite the potential pitfalls
of over-conformist social learning, including sub-optimal behaviour development
[10] and even population collapse [11,12], social learning, and therefore social
information transfer, can be of great bene�t to agents, thus explaining why even
simple forms of social information transfer are seen so widely in nature [13,8,14]
and have been shown to produce complex behaviours that are easily attributed
to more complex social learning mechanisms like imitation [15]. At the heart of
the problem being addressed here are three core arguments. (1) Information is a
�tness enhancing resource [16], even when information suppression is seen to be
adaptive [17] or when information is encoded or interpreted incorrectly [16] - any
new information about the world enables populations of agents to better adapt
to the world they are in, even if this means disregarding or suppressing informa-
tion. (2) Incremental evolution is not a process of unguided random variations,
but a process that itself can adapt in a way that is analogous to the kind of
learning seen in cognitive organism [18], leading to complex and robust adaptive
traits in nature, autonomous robots [19] and simulated agents [20] in the same
way that learning can lead to complex and adaptive behaviours (though on a
di�erent time scale). (3) Inadvertently expressed public information and simple
mechanisms of social information transfer can lead to behaviours that are suf-
�ciently complex to enable cultural evolutionary processes [21,5]. These three
core arguments give us good reason to believe that social information without
within-lifetime learning processes should still be adaptive, and therefore lead to



evolution adopting the use of social information to the bene�t of social agents
over non-social agents. Though we must still be mindful that social information
may be at odds with personal beliefs [21] or lead to population-level conformism
to sub-optimal behaviours [10], thus leading to a trade-o� between the accom-
modation of social information and the evolution of robust evolved behaviours.

This leads us to the hypothesis that agents making use of social information
should outperform non-social agents: any additional information, that is not just
noise, that provides more information about the environment should lead agents
to an improved �performance� in the environment over agents without access to
such information. However, social information may only be useful when it accu-
rately indicates success or indirectly leads to success, and therefore may provide
little or no concrete bene�t in complicated or less predictable environments - in
these more challenging environments learning may be necessary to allow tem-
porarily useful social information to be quickly adopted and then rejected when
it is no longer relevant. This hypothesis will be tested by modelling populations
of agents who have no social information available to them and populations of
agents with various forms of social information available to them. Each social
information strategy will be tested against the non-social strategy, starting ini-
tially with the most basic strategy available: presence, with the null hypothesis
in each case being that the social population does not show an improved ability
to solve the task at hand compared to non-social agents. The social information
strategies used here are: presence, action, health and age. Presence social infor-
mation simply enables agents to detect the presence of other agents (non-social
agents are essentially blind to other agents); action enables agents to see what
other agents are currently doing; health enables agents to see the current energy
or battery state of others; and age information enables agents to see how long
others have lived for.

2 EnVar and Environmental Set-up

The task world used here is known as EnVar. EnVar is a bounded (non-toroidal)
2D environment containing a variety of consumable resources known as plants.
Plants are recognised by agents simply as an RGB value. Plants are divided into
a number of species, each with a base RGB value and a radius in RGB space.
Plants are generated within these RGB regions and identi�ed as belonging to
the nearest species according to euclidean distance in RGB space. Each plant
species is assigned an energy value, which is transferred to agents if the plant of
that species is consumed; energy values may be positive or negative. Notionally
the EnVar world is broken up in to cells, though here each cell represents a
pixel and therefore the world can be considered to be continuous. Plants in the
world take up a number of cells, forming a block, with each block only being
able to be eaten a certain number of times before being exhausted (here set to
be 200 eating events). Once a plant block has been exhausted it is no longer
consumable and therefore removed from the world to be replaced by a new
block from a random plant species somewhere else in the world - this maintains



a constant number of food blocks in the world at any time. Agents are permitted
to share space with a plant resource but cannot overlap with each other, thus
removing the possibility of agents piling up on top of one another on valuable
food resources. In this work EnVar is set up to create a 700 × 700 pixel sized
cell world, containing �ve hundred 10 × 10 pixel blocks of plants. In order to
test our hypothesis we test populations of social and no social agents in a set of
increasingly di�cult environments. Environmental di�culty is dictated by the
ratio of positive food resources to negative food resources. The simplest world
used here has an equal (1 : 1) ratio of positive food species to negative food
species. Tests get progressively harder by increasing the number of negative
food species, whilst maintaining only one positive food species, resulting in the
most di�cult world used here having a 1 : 9 ratio of positive food species to
negative food species. As each plant species has a equal chance of appearing
in the world, and covers approximately the same portion of RGB space, agents
in the most di�cult environment are nine times more likely to experience a
negative plant resources than a positive plant resource. In the results section
below environment 1 relates to a 1 : 1 ratio environment, with environment 9
relating to a 1 : 9 ratio environment. For all tests here negative food species come
with an energy value Eneg = −10.0, with positive food species contributing an
energy value of Epos = 1.0 when consumed. This provides a strong evolutionary
pressure to avoid eating negative food species.

3 Neuroevolutionary Model

Agents in the EnVar simulation world are grounded 2D simulated agents, con-
trolled by a hybrid neural network architecture known as the Shunting Model1.
The shunting model uses two interacting neural networks to determine agent be-
haviours, here represented as a discrete set of agent actions. The two interacting
networks are known as the Decision Network and the Shunting Network. The
decision network is simply a feed-forward neural network comprising of an input
layer, one hidden layer and an output layer. Outputs from the decision network
are used to produce a locally-connected, topologically-organised network of neu-
rons known as the shunting network, which simply places and organises agent
preferences for environmental features and states in such a way to allow the agent
to hill climb in a shunting space (known as the activity landscape) that directly
maps on to their immediate neighbourhood. The shunting network weights are
�xed for all agents, whereas the decision network is genetically encoded and is
subject to change via evolution.1

3.1 The Shunting Network

The shunting network is a locally-connected, topologically-organised network of
neurons that was originally used for collision free motion planning in robots [22]

1 For a detailed overview of the Shunting Model architecture please see [22,23,24]



and has been subsequently applied in a number of 2D and 3D arti�cial life mod-
els [23,4,24,10]. Here the shunting network's topology is simply superimposed on
to the environment, with each cell in the network topology directly relating to a
pixel within an agent's visual �eld. Using the shunting equation (see equation 1)
values for each cell (which can be interpreted as representing an environmental
feature or state, and are initially set by the Iota output I obtained from the
decision network) are propagated across the neurons/cells of the network, pro-
ducing an activity landscape with peaks and valleys representing desirable and
undesirable features in the environment. The result is a landscape which allows
the agent to follow a route determined by the higher Iota values while avoiding
undesirable valleys. A mock-up example of an activity landscape with a snapshot
of the visual �eld it represents can been seen in �gure 1.

dxi
dt

= −Axi +
∑
jεNi

wij [xj ]
+
+ Ii (1)

Environment Activity Landscape

AgentPlants Foreign Agent on Plant

Positive 
Activation

Negative 
Activation

Fig. 1. Mock-up transition from agent visual �eld to shunting network activity land-
scape: The left-hand grid shows the agent's visual �eld with two plant objects and one
other agent occupying the same space as a plant. The right-hand grid shows an example
activity landscape for the visual �eld. The agent determines that an agent on a plant is
an interesting feature and therefore assigns it a strong positive Iota value (I), whereas
the purple plant is seen negatively and is therefore assigned a strong negative Iota
value. These Iota values propagate over the activity landscape using equations 1 and
2. The central agent then chooses to move within its immediate Moore neighbourhood
to the cell with highest activity value.

In equation 1 each node in the shunting network corresponds to one pixel within
an agent's visual �eld; xi is the activation of neuron i; A is the passive decay
rate; Ni in the receptive �eld of i; wij is the connection strength from neuron j
to i, speci�ed to be set by a monotonically decreasing function of the Euclidean
distance between cells i and j; the function [x]+ is max(0, x); and Ii is the



external input to neuron i (known as the Iota value). The shunting network is
advantageous as it exhibits computational e�ciency by not explicitly searching
over all possible paths. In line with the work of Stanton and Channon [24],
we use a simpli�ed, stable solution for equation 1 as seen in equation 2. Here
constant xnewi = xi for all i. The maximum Iota value is maxI = 15, with the
resulting value for xnewi also being capped at a minimum Iota value minI =
−15. This stops Iota values growing out of control, whilst providing a large
enough maximum value (and a small enough minimum value) to ensure activity
propagation across the network. In order to allow propagation to occur within
a time-step, the shunting equation must be run a number of times, we take this
number of iterations to be equal to the diameter of the visual �eld.

xnewi = min

1

8

∑
jεNi

[xj ]
+
+ Ii,maxI

 (2)

The shunting model implemented here di�ers in a number of signi�cant ways
from previous Arti�cial Life implementations [23,4,24,10]. In these previous im-
plementations agents see their entire environment, have a set number of discrete
environmental features and states to set Iota values for, and are in the environ-
ment alone to complete a predetermined task. Here agents have a limited view of
the world, have the possibility of needing to a set an Iota value for a plant of any
given RGB value, and exist as a population within the environment (leading to
possible input states where an agent can be seen on a particular plant). In order
to accommodate these di�erences the shunting model here is run independently
for each pixel in an agent's visual �eld, which is set here to have a radius of 30
pixels from center of the agent, with information about that pixel being included
as part of the agent's decision network input layer. In this way an Iota value is
calculated for each unique environmental state within an agent's visual �eld (in
previous models, each discrete environmental state was included as an output,
with only an agent's internal state or current cell's state being accommodated
in the input layer of the decision network). This change does not change the
resulting behaviour of the shunting model or activity landscape, just the way in
which information is passed to the shunting network from the decision network.
In order to minimise the amount of processing time required to populate and
create the activity landscape, Iota values are only collected for unique states ex-
perienced by an agent - for a state to be unique it must be a newly experienced
set of decision network inputs (discussed below). To further optimise processing
time, an agent will only produce an activity landscape if its outputs determine
that it should move in the current time step; agents that are not moving do not
need an activity landscape.

3.2 The Decision Network, Neuroevolution and Reproduction

Evolution in the model is applied only to the decision network. The decision
network here is a feed-forward neural network comprised of seven standard in-



put nodes, and an additional social input node in social information tests, eight
hidden units, and two output nodes, resulting in 112 - 128 weights. Each network
layer is fully connected, with �oating point weights in the range [-1:1] being di-
rectly encoded from an agent's genotype. A standard sigmoid activation function
is used at each hidden and output node, though outputs processed for deriving
agent actions are then scaled to be within the range [0:1] and the Iota output is
scaled to be within the range [minI : maxI]. As the agent is expected to produce
an Iota value to feed in to the shunting network for each unique environmental
feature or state within its visual �eld, inputs into the decision network must
accommodate both the internal state of the agent, the state of their current
environment, and the state of the environmental feature they are assessing; this
leads to there being two sets of input nodes. The �rst set of input nodes are
simply plant RGB inputs - if the agent is viewing empty space these inputs are
set to -1, else they are set to be the normalised RGB of the plant being viewed.
Following these inputs are a series of generic inputs, which are dependent on the
agent's internal state and the current environmental state. These inputs are the
agent's current battery level in the normalised range [0:1], a moving average of
the agent's battery level over the previous 100 time steps, the agent's current
external environmental state and a moving average environmental state, which
are both set to be +1 and do not change in the tests presented here (the model is
set-up to accommodate external environmental change which is not used here).
In social information tests agents have an additional input based on the agent
they of viewing.

The genotype, which is essentially an array of weights, is subjected to both
mutation and crossover should a reproduction event take place. The crossover
mechanism used here is single point crossover, with per locus mutation occurring
with probability pmut = 1/L, where L is the length of the genotype. Mutation
is achieved by way of Gaussian random noise, with a value taken from a normal
distribution with µ = 0, σ = 0.01 being either subtracted or added to the
�oating point value at the loci to be mutated. All weight values are bounded
in the range [-1:1]. Reproduction events take place only in response to a death
event. Agents can die if they run out of energy, or if they are in the lowest 10% of
agents ranked by energy at the end of an epoch. The �rst method for removing
agents from the population ensures that agents cannot remain in the population
with no energy, the second method ensures space is made for new agents to
be created even if the population as a whole is successful at maintaining above
zero energy levels, thus maintaining a selection pressure for task improvement.
Both methods of death are not directly related to task ability as it is possible
for a good agent to be unlucky and never, or rarely, experience a positive food
resource whereas less able agents may have the fortune to be born near an
abundance of food resources or be born relatively close to the end of an epoch.
This method of reproduction maintains a constant population size of 200 agents.
The new agent, or child, created to replace the removed agent is the progeny
of two agents, one of whom is selected in a tournament, the other of which
is selected randomly from the remaining population. The tournament selection



mechanism applied here takes two agent from the population, compares their
current energy levels, and selects the agent with the higher energy level as a
parent. Like in nature this isn't a perfect measure of �tness as it is possible the
agent is young and therefore has not yet had time to loose signi�cant amounts
of energy, or the agent could have simply been lucky or unlucky with available
food sources. However, in general agents with more e�ective behaviours will on
average �nd themselves with a better energy levels than agents with less e�ective
behaviours, thus driving evolution toward behaviours that are more suited to the
task or environment at hand. The second parent is selected randomly to ensure
the population doesn't become dominated by the progeny of a small sub-set of
the population, thus maintaining a level of exploration in the genotypic search
space. New agents are placed in the world within the visual �eld of one of their
parents.

3.3 Agent Actions and Action Energy Costs

The agents in the model have a set of simple, discrete, actions available to them,
through the output layer of their decision networks: wait, eat or move. The
decision network has two outputs, an Iota output to be fed into the shunting
network and an eat/wait output. The agent �rst considers its current input state
at its current position - if the agent produces an Iota value above the threshold
θa = 0.5 it indicates the agent if happy with it's current state and position
and therefore does not move (an activity landscape is therefore not calculated
as it not needed). The agent's eat/wait output is then considered; if the output
produces a value above the threshold θb = 0.5 the agent attempts to eat whatever
may be at its current position; agents are welcome to try and eat at locations
where no plant is present, but no bene�t for this action is conferred, and the
eat action is considered to be an unsuccessful eating attempt rather than a wait
action. If an agent decided to eat at a location containing a plant, the plant's
energy is transferred to the agent, this does not necessarily lead to the exhaustion
of the plant resource, as plants are considered as a mass. The Iota output is in the
range [-1:1], which is then scaled to be within the range [minI : maxI] for use in
the shunting network, whereas the eat/wait output is limited to the range [0:1].
If the eat/wait output gives an output below the expected threshold the agent
simply waits at its current location. Waiting and eating both reduce an agents
energy by 0.1 energy units (though eating may result in a net energy gain), with
moving using up 0.2 energy units per time step. Agents will only move if their Iota
output for their current location is below threshold θa, in this case an activity
landscape is created based on the Iota outputs for all visible environmental
features. Agents are born with, and are able to achieve, a maximum energy level
of 100 units. As epochs here constitute 1000 time steps, an agent would be able
to survive for a maximum of one epoch, or one thousand time steps by remaining
inactive. In order to avoid moving agents moving around in circles, or moving
backwards and forwards, in neutral space (where there is no activity gradient
from the activity landscape) consecutive neutral move actions maintain the same
direction of travel with probability pdir = 0.9.



Measurements are taken to determine whether an eat event was successful or
unsuccessful. Any eat action that does not result in a non-negative energy pro-
viding food source being consumed is considered to be unsuccessful, so only eat-
ing non-energy reducing plants is a successful eating action. In order to measure
a population of agents' success in a given environment, the di�erence between
successful and unsuccessful eating actions is measured. This di�erence measure
is useful as it is possible for agents to spend an equal amount of time eating
successfully and unsuccessfully, which would demonstrate a strong performance
on measure of successful eating, but a weak performance on a measure of unsuc-
cessful eating - the di�erence instead demonstrates a neutral performance, so a
population that spends very little time eating, but all of that time eating suc-
cessfully (so a picky eating strategy) would be a better performing population
than a locust like population that eats everything in sight.

3.4 Social Information Strategies

Populations of agents using social information di�ers only very slightly from
non-social populations; social information populations have an additional input
unit for social information, thus non-social agents are rendered blind to other
agents in the world. The social information strategies explored here, including
the no social strategy are discussed below:

No Social: No input node is available to the agent to enable social information
to be used by the agent's decision network. Agents proceed with no information
about other agents.

Presence: The social information input node receives an input of +1 if an-
other agent if present within the visual �eld. No other information about the
agent being viewed is used. This strategy is not dissimilar to the Inadvertent
Information strategy used by agents in the work by Mitri et al. [17], though the
agents explored in the work presented here do not have a choice about whether
they express social information or not (this is the case for all social information
strategies presented here).

Action: An input representing the current action state of the agent being
viewed. The wait action is input as a value of 0, eat is input as 0.5 and move is
represented as 1.

Health: The current energy levels of the agent being viewed are normalised to
be within the range [0:1] and input to the viewing agent's decision network.

Age: The age (in time steps) of agent being viewed is normalised using a hyper-
bolic tangent function of the logarithm of the age, which is then normalised to
be within the range [0:1]. See formula (3) where a represents agent age in time
steps.

inputa = (tanh (log (a)) + 1) /2 (3)



4 Results and Discussion

Forty populations of each social information strategy (including no social) were
tested on each environment (1 → 9). Each population was permitted to evolve
in the environment for 100 epochs of 1000 time steps. Reproduction and death
events occurred both within and at epoch, meaning all populations were a mix
of young and older agents at all stages of evaluation, with agents having no max-
imum age limit. Population data was accumulated for each epoch, and collected
at the end of each epoch. As we are primarily interested here in the �nal test per-
formance achieved by a population, not the pathway toward this achievement,
average metrics were taken for each population, for each environment, for the last
25 epochs of a test, by which point performance had stabilised across measures.
The results presented here are the median values of the 40 populations' average
last 25 epochs of data - as this data was rarely normally distributed the medians
were considered to be of more use than means. In order to derive the statisti-
cal signi�cance between population data for each social information strategy a
Mann-Whitney U test was used, with p values being derived from the resulting
Z-scores. Figure 2 presents Z-score values on an inverted secondary y-axis, with
p-value being represented by highlighting over Z-score data points. In order to
test our hypothesis, that populations of agents making use of social information
should outperform non-social agents, we measure the di�erence between how of-
ten agents successfully and unsuccessfully apply their eat actions, thus allowing
us to measure the e�ectiveness of the eating behaviour within populations. Only
comparisons for each social information strategy against the no social strategy
are undertaken to see if any statistically signi�cant di�erences arise. We go on
to further analyse a wider array of metrics, including successful and unsuccessful
eating actions in isolation, agent turnover, and average agent age.

4.1 Eat Action Performance

In �gure 2 we can see the di�erence between successful and unsuccessful eating
actions for each social information strategy compared to results for non-social
populations. Looking �rst at populations with no social information (black line
on all graphs in �gure 2) we see that the median di�erence crosses zero, and
therefore indicates the eat action is being applied unsuccessfully more often
than successfully, at environment 3 (a 1:3 positive to negative food ratio). All
social information strategies manage to maintain the eat action in favour of
successful eating until a more di�cult environment - this is most notable for
both the Health and Age social information strategies where eat actions do
not begin to favour unsuccessful eating until environment 5, with the Health
strategy re-crossing zero brie�y, and the Age strategy maintaining an almost
neutral pro�le for all environments after environment 5. This suggests there is a
bene�t to social information in that social information may allow populations to
maintain successful behaviours in more challenging and di�cult environments.
However, if we look more closely at the resulting Z-scores and p-values we see that



both the Presence and Action strategies rarely demonstrate a signi�cantly better
di�erence in eat actions over populations of no social agents, and even when
signi�cant di�erences are seen they are with relatively weak and therefore lead us
to the conclusion that we cannot say with any certainty that either the Presence
or Action social information strategy provides a signi�cant improvement over
having no social information at all. Despite the poor performance seen for all
strategies in later environments, all strategies were capable of enabling at least
one population to achieve a positive eat pro�le in all environments. It is also
worth noting the inconsistent results observed with regard to the No Social
strategy in environments 7 and 8. Despite the median result �uctuating in a way
that suggest environment 8 was less challenging than environment 7, there was
no statistically signi�cant di�erence between the distribution of results for these
environments.

Despite Presence and Action social information being of dubious value, it does
seem that both Health and Age social information provide a more convincing
bene�t. We can see in �gure 2(c) that populations using social information about
the health of other agents demonstrate a signi�cantly better di�erence in eating
actions until environment 7, this performance di�erence is most noticeable in
less di�cult environments (environments and 1 and 2) where we see a p value
<0.01. Populations using social information about age (as seen in �gure 2(d))
also demonstrate a signi�cantly better di�erence in eating action in less di�-
cult environments, though the statistical signi�cance over environments is less
consistent. However, the two most signi�cant Z-scores seen relate to no social
information vs. age social information on environments 1 and 2, which suggest
that social information about age is particularly useful in these less di�cult, but
still challenging environments. From this data we can begin to see the potential
advantages of certain types of social information.

4.2 Social Information Performance in Less Di�cult Environments

In �gure 2 we see that environment 1, where there is a 1:1 ratio of positive to neg-
ative plant resources, gives rise to a signi�cant di�erence in eating performance
when social information populations are compared to populations with no access
to social information, with this result being extended to environment 2 (a 1:2
ratio) for both Health and Age social information populations. This suggests
a particular bene�t to using social information in less di�cult environments.
It is worth noting here that whilst environment 1 and 2 are less di�cult than
later environments used here, they are still themselves reasonably challenging
given that we could have tested in environments with positive plant resources
in abundance. Having a 1:1 or 1:2 ratio of positive to negative plant resources
provides a reasonable challenge, so much so that in environment 3 we see that
non-social populations, relying on evolution alone and having no access to social
information, now begin to struggle at the task. Figure 3 shows a wider range of
performance metrics for environment 1, including the breakdown of successful
and unsuccessful eating actions in isolation. Here we see that the success of social
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Fig. 2. Di�erence between successful and unsuccessful eat actions: Graphs showing the
di�erence in % of actions that quali�ed as successful eating actions and % of actions that
quali�ed as unsuccessful eating actions in each environment, for each social information
strategy compared against no social information. All graphs show the Z-score from an
Mann-Whitney U test on the secondary y axis, with highlighting included to indicate
statistical signi�cance. Each data point represents the median of the average results
for forty populations.

information populations is as a result of both higher eat success rates and lower
eat failure rates, though it is interesting to note that Age, Presence and Action
social information populations are capable of demonstrating very low levels of
eat success, even when compared to No Social populations, when the full data
range is considered. The main driving force behind the success of social popu-
lations, especially Health and Age, seems to be consistently low eat fail rates
across populations - the upper quartile ranges for both of these strategies not
exceeding 0.02 (2% of actions). This suggests that social information is often
being used to help agents avoid or not consume negative plant resources. Age
and Health information may be particularly useful for this purpose as it would
allow agents to avoid or ignore young or unhealthy agents whilst developing a
preference for healthy and older agents. Whilst Presence or Action information
may also be useful for the purposes of discrimination (move towards areas of
high agent presence, or follow moving agents for example), they are both po-
tentially riskier sources of information compared to Health or Age which both
provide information about agent success. Figure 4, which shows performance
metrics for environment 2, also shows that for Age social information this abil-



ity to maintain consistently low rates of unsuccessful eating alongside a strong
eating success performance is maintained in slightly harder environments. We
can also see that for unsuccessful eating actions, the upper quartile range for so-
cial information strategies is comparable to the median for no social populations.
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Fig. 3. Environment 1 box plots: Box plots for the eat action and other population
metrics, including a breakdown of successful and unsuccessful eating actions, average
agent age, and agent turnover, in environment 1.

Alongside information about eating, both �gures 3 and 4 also give information
on average agent age and agent turnover. For both environments 1 and 2 we
see both Age and Health social information enabling populations to accomplish
a high average agent age with an accompanying reduction in agent turnover
(fewer agents dying within an epoch due to running out of energy), though the
median agent turnover for Health social information is comparable to the no
social tests. Both Presence and Action populations fail to distinguish themselves
from No Social populations, suggesting the improvements in eating performance
seen most notably in environment 1 do not necessarily translate directly to im-
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Fig. 4. Environment 2 box plots: Box plots for the eat action and other population
metrics, including a breakdown of successful and unsuccessful eating actions, average
agent age, and agent turnover, in environment 2.

proved survival, this suggests there must be other underlying behaviours that
are causing these populations to use more energy thus resulting in lower aver-
age ages and a higher agent turnover when compared to the Age and Health
social information populations. We suspect the indeterminate quality of both
Presence and Action information causes agents using this information to be less
discerning about which agents and plant resources they move towards, result-
ing in less informed movement and therefore less e�cient energy expenditure -
though further analysis will have to be done to con�rm these suspicions.

5 Conclusions and Further Work

The work presented here, alongside results from of Mitri et al. [17], contribute to
the discussion on the adaptive value of social information for evolved simulated
agents by demonstrating that social information can provide an adaptive bene�t
to a neuroevolutionary process when decoupled from a within-lifetime learning



process. However, we do see that social information is only of an consistent adap-
tive bene�t in less di�cult environments, and when the social information itself
is informative. This work also demonstrates the potential adaptive bene�ts of
simple social and public information strategies such as social in�uence, social
facilitation, stimulus enhancement, and local enhancement [25,13,8,14], adding
further weight to the work by Noble and Todd [15] in which it was argued that
simple social learning mechanisms are capable of producing complex adaptive
behaviours that may easily be confused for the resulting behaviours of more com-
plex social learning mechanisms. The social information strategies implemented
here could be argued to be mechanisms of stimulus and local enhancement as the
social information inadvertently expressed here by agents could be used by others
as an attractor to unfamiliar plant resources or a promoter of eating (or other)
behaviours. However, we also see evidence of social information potentially being
used to ignore locations or being used to suppress eating (or other) behaviours,
which may indicate some level of information suppression [17]. Moving forward
we intend to undertake a greater analysis of the behaviours being expressed by
agents in this work. It would be of interest to see how often non eating ac-
tions are utilised by agents and whether the amount of movement undertaken
by agents is promoted by having social information, with further investigations
being necessary to ascertain whether this movement results in greater or lesser
agent grouping, as evidence from other �elds suggests that social information
should result in larger groups, thus promoting more informed individual deci-
sion making based on the larger quantities of social information made available
as a result of having a larger social group [1].
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