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Abstract—Previous works have used a novel hybrid network
architecture to create deliberative behaviours to solve in-
creasingly challenging tasks in two-dimensional and three-
dimensional artificial worlds. At the foundation of each is a
static hand-designed neural network for robust and delibera-
tive motion planning. This paper presents results from replac-
ing the hand-designed motion-planning subnetwork with Hy-
perNEAT. Simulations are run on the original two-dimensional
world with, and without, relative position inputs and a multi-
evaluation fitness function, thus assessing the relative perfor-
mance of each strategy. The focus of this work is on solutions
adaptable to general environments; following evolution, each
strategy’s performance is evaluated on 10,000 world config-
urations. The results demonstrate that although HyperNEAT
was not able to achieve as robust results as a hand-design
approach, the best strategy was comparable, with just a 3-4%
drop in performance. Relative position inputs and the multi-
evaluation fitness function were both significant in achieving
superior general performance, compared to those simulations
without.

1. Introduction

One goal in Artificial Life (ALife) is to construct sys-
tems that exhibit the behavioural characteristics of natural
living systems. So, ALife models take abstractions from
nature by focusing on key features in order to produce
feasible simulation models in silco. To achieve sophisticated
behaviours, some approaches have constrained evolution’s
search space by hand-designing aspects of their models.
These approaches can provide state-of-the-art results, but
require highly specialised models that demand significant
domain expertise to design. For example, research into the
neuroevolution of bipedal gaits has used custom network
topologies [1, 2, 3], parameter optimization techniques [4]
and pre-evolved bootstrapping [5, 6] to constrain the search
space. These constraints make evolution feasible, but they
also limit its creativity and its ability to generate novel be-
haviours. Achieving more sophisticated behaviours requires
the removal of these constraints.

The success of Deep Learning in recent years, such as
setting world record results in supervised learning tasks [7],
demonstrates that advanced behaviours are obtainable with-

out careful engineering and considerable domain expertise.
Certain neuroevolutionary methods parallel this approach.
Topology and Weight Evolving Artificial Neural Networks
(TWEANNs) allow only the network inputs and outputs
to be defined while the network topology constructs itself.
NeuroEvolution of Augmenting Topologies (NEAT) [8] is
the most prominent of these approaches, due to small search
spaces being optimised before adding links and nodes for
increasingly complex behaviour. NEAT has been extended
to incorporate indirect encoding techniques, which provides
scalability to more sophisticated tasks. Hypercube-based
NeuroEvolution of Augmenting Topologies (HyperNEAT)
[9], Evolvable-substrate HyperNEAT (ES-HyperNEAT) [10]
and HybrID [11] all utilise NEAT in their evolutionary
process, and have been used for numerous tasks such as
evolving Quadruped Gaits[12], general game players [13]
and autonomous robot cars [14].

At the core of previous validated ALife tasks a hand-
designed subnetwork, known as the Shunting Model, has
been used to produce robust and deliberate motion planning
in dynamic environments. The Shunting Model has been
combined with additional networks to produce high-level
reactive and deliberative behaviours; which have been used
in 2D and 3D simulations [15, 16, 17, 18] as well as
robotics [19]. The Shunting Model’s behaviour is unaffected
by evolution and remains consistent. A general approach
attempting to replicate comparable results will theoretically,
as it has not yet been attempted, face a greater challenge.

It is the aim of this work to replace the Shunting Model
in an experiment that utilises it, and assess HyperNEAT’s
ability to produce deliberate and robust motion planning.
However, a successful implementation is difficult to quan-
tify. The transition from a static network, with perfect, pre-
dictable performance, to an evolvable general model widens
the scope outside of pure performance benchmarks; each
can be statistically compared, but the two have different
potentials. Evolution provides freedom to explore and gen-
erate novel behaviours, thus allowing the possibility to adapt
to future unforeseen changes to the task. Comparatively, a
static network will require manual intervention to change
its function. Therefore, successful implementations will take
into consideration the performance on the current task rela-
tive to future potential.





their environment. A limited visual radius has been used to
address this problem in Borg and Channon [16].

2.2. NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) was
introduced by Stanley and Miikkulainen [8] as a novel
neuroevolutionary method that concurrently evolves the
weights and topology of an artificial neural network. NEATs
evolutionary process utilises an initial population of small
and simple networks which complexify over generations,
thus leading to increasingly sophisticated behaviour. The
three main components of this process are: 1) Crossover,
2) Speciation and 3) Complexification; each made practical
via historical markings which incorporates an incremental
innovation number to each gene. The genome representation
is a linear order of link and node mutations. Topologies are
compared by lining up each gene and comparing innova-
tion numbers and content, thus avoiding expensive analysis.
Genes either contain the same links (matching) or do not
(disjoints and excess); these factors can be used to define
species. Speciation operates dynamically via a similarity
threshold. Speciation prevents the global population from
converging on local optimums by individuals only com-
peting in their niches. Therefore, structural innovations are
protected and allowed time for optimisation via mutation
and crossover. Crossover between structurally similar indi-
viduals, in theory, avoids the Competing Conventions prob-
lem. NEAT has proven itself in various task domains such
as competitive robot control [20], a crash warning system
[21] and Go [8]. Extensions include FT-NEAT, rtNEAT and
CPPN-NEAT, the latter being fundamental to HyperNEAT.

2.3. Hypercube-based NEAT (HyperNEAT)

HyperNEAT is the indirect encoding extension of NEAT
[9] that utilises a Compositional Pattern Producing Net-
work (CPPN) to encode the weights of a representation
network, known as the substrate. CPPNs were devised as
an abstraction of natural development encoding to generate
complex, regular and geometric patterns [22]. CPPNs have
been shown to produce patterns with structural components
similar to those observed in nature, including repetition,
repetition with variation, symmetry and imperfect symmetry.
Regularities are tied to specific activation functions, such
as sine for repetition and Gaussian for symmetry. Varying
activations in combination have the potential to produce
complex patterns. Visual affirmation of CPPNs ability to
produce natural biological patterns is seen on the on-line
service Picbreeder [22]; users collaborate to construct im-
ages through interactive evolution. Deep neural networks
and other human users are able to recognize and classify
the produced images into sensible categories [23]. CPPNs’
structural similarity to ANNs allows evolution to use NEATs
established benefits, with the addition of an evolvable ac-
tivation function within each node. Weights for each link
are provided by a CPPN using the positional coordinates of
each links starting and ending node. Geometric properties

of a task domain can therefore be exploited, provided that
an appropriate substrate is used.

3. Experiment Setup

The following sections will address various design con-
siderations with the RC task and HyperNEAT.

3.1. RC Task

The DN will be pre-evolved to achieve the highest fitness
in the conventional RC task, for this work aims to replicate
the SM. The SMs full capabilities would include preventing
negative values from propagating in the activity landscape.
This addition would require contrasting activation functions
in the substrate, such as Rectified Linear Unit (ReLU), or
an architectural change, such as the addition of a hidden
layer or separate inputs for negative and positive values.
HyperNEATs ability to achieve the primal navigation func-
tionality of the SM is not yet known, so this feature will be
reserved for future work. Therefore, undesirable objects will
not be used for inputs, but instead deducted directly from
the activity landscape so they will continue to be avoided.
Inputs will be provided by the pre-evolved DN. Outputs will
map directly to the activity landscape. Animats will follow
the highest activation neighbour, as in the conventional RC
task and other HyperNEAT implementations [13].

An additional fitness function will be simulated due to
the change in task domain. The original fitness function
assesses how successful an animat was on a selection of
four RC worlds and does not translate to the animats general
success. An SM replacement must be able to achieve equiva-
lent results in all RC world combinations. For more granular
feedback, the new fitness function uses the mean from 10 RC
task runs. Animats will have to consistently build bridges
in different environments to survive. This modified fitness
function can be viewed as a larger environment with each
RC task being a limited section of that environment.

3.2. HyperNEAT

The substrate design is important to the performance
of HyperNEAT, as established in previous work; a general
substrate design can prove successful in a variety of different
task domains [24]. The sandwich substrate is one high-
lighted in existing literature; it has been used successfully in
locomotion with no obvious geometric relationship between
sensor positions and substrate inputs [24, 25]. To avoid
the bias of expert domain knowledge, this work uses the
sandwich substrate with 20x20 input and output layers. Ad-
ditionally, links with weight values less than 0.2 or greater
than -0.2 were discarded in previous implementations. This
restriction is removed in this work, thus allowing greater
nuances in the encoding pattern.

Two CPPN input variations will be simulated. Standard
CPPN inputs for the majority of HyperNEAT experiments
include x1, x2, y1, y2 and a bias. Delta inputs (x1 -
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