Toward Evolving Robust, Deliberate Motion Planning With HyperNEAT

Ben Jolley and Alastair Channon
School of Computing and Mathematics
Keele University
ST5 5BG, UK
Email:{b.p.jolley, a.d.channon}@keele.ac.uk

Abstract—Previous works have used a novel hybrid network
architecture to create deliberative behaviours to solve in-
creasingly challenging tasks in two-dimensional and three-
dimensional artificial worlds. At the foundation of each is a
static hand-designed neural network for robust and delibera-
tive motion planning. This paper presents results from replac-
ing the hand-designed motion-planning subnetwork with Hy-
perNEAT. Simulations are run on the original two-dimensional
world with, and without, relative position inputs and a multi-
evaluation fitness function, thus assessing the relative perfor-
mance of each strategy. The focus of this work is on solutions
adaptable to general environments; following evolution, each
strategy’s performance is evaluated on 10,000 world config-
urations. The results demonstrate that although HyperNEAT
was not able to achieve as robust results as a hand-design
approach, the best strategy was comparable, with just a 3-4%
drop in performance. Relative position inputs and the multi-
evaluation fitness function were both significant in achieving
superior general performance, compared to those simulations
without.

1. Introduction

One goal in Artificial Life (ALife) is to construct sys-
tems that exhibit the behavioural characteristics of natural
living systems. So, ALife models take abstractions from
nature by focusing on key features in order to produce
feasible simulation models in silco. To achieve sophisticated
behaviours, some approaches have constrained evolution’s
search space by hand-designing aspects of their models.
These approaches can provide state-of-the-art results, but
require highly specialised models that demand significant
domain expertise to design. For example, research into the
neuroevolution of bipedal gaits has used custom network
topologies [1, 2, 3], parameter optimization techniques [4]
and pre-evolved bootstrapping [5, 6] to constrain the search
space. These constraints make evolution feasible, but they
also limit its creativity and its ability to generate novel be-
haviours. Achieving more sophisticated behaviours requires
the removal of these constraints.

The success of Deep Learning in recent years, such as
setting world record results in supervised learning tasks [7],
demonstrates that advanced behaviours are obtainable with-

out careful engineering and considerable domain expertise.
Certain neuroevolutionary methods parallel this approach.
Topology and Weight Evolving Artificial Neural Networks
(TWEANNSs) allow only the network inputs and outputs
to be defined while the network topology constructs itself.
NeuroEvolution of Augmenting Topologies (NEAT) [8] is
the most prominent of these approaches, due to small search
spaces being optimised before adding links and nodes for
increasingly complex behaviour. NEAT has been extended
to incorporate indirect encoding techniques, which provides
scalability to more sophisticated tasks. Hypercube-based
NeuroEvolution of Augmenting Topologies (HyperNEAT)
[9], Evolvable-substrate HyperNEAT (ES-HyperNEAT) [10]
and HybrID [11] all utilise NEAT in their evolutionary
process, and have been used for numerous tasks such as
evolving Quadruped Gaits[12], general game players [13]
and autonomous robot cars [14].

At the core of previous validated ALife tasks a hand-
designed subnetwork, known as the Shunting Model, has
been used to produce robust and deliberate motion planning
in dynamic environments. The Shunting Model has been
combined with additional networks to produce high-level
reactive and deliberative behaviours; which have been used
in 2D and 3D simulations [15, 16, 17, 18] as well as
robotics [19]. The Shunting Model’s behaviour is unaffected
by evolution and remains consistent. A general approach
attempting to replicate comparable results will theoretically,
as it has not yet been attempted, face a greater challenge.

It is the aim of this work to replace the Shunting Model
in an experiment that utilises it, and assess HyperNEAT’s
ability to produce deliberate and robust motion planning.
However, a successful implementation is difficult to quan-
tify. The transition from a static network, with perfect, pre-
dictable performance, to an evolvable general model widens
the scope outside of pure performance benchmarks; each
can be statistically compared, but the two have different
potentials. Evolution provides freedom to explore and gen-
erate novel behaviours, thus allowing the possibility to adapt
to future unforeseen changes to the task. Comparatively, a
static network will require manual intervention to change
its function. Therefore, successful implementations will take
into consideration the performance on the current task rela-
tive to future potential.

Resource

()
‘V
o
00
Yo
)
0
)
\/

)
)
o

4
%
)
o
;
5

Q
9
Q
¢

)
o
‘%%
4
o
XA
5
Ky
W%
e
9

)
00
RN
00
0

o
0000

M8

o
/
é&’
R
X
5
RN
X000
AR

S8

)
5
e
%
%@

A
5

o

$§?
&%%
o

()

&

()

%

,0
(XX
¢

$

!

0

9

%
5
o
"

V)

&

X
e
X
e

K
W
50
e
Q00X
0
&

§

X

YV

<3

£
A
%
e
%
o
%
K

Animat Stone

4
5
&
%

Figure 1. An RC World environment (left) with the corresponding activity landscape (right) produced via the Shunting Model.

2. Background

2.1. River Crossing Task

The River Crossing (RC) Task was devised in Robinson
et al. [15] to demonstrate high-level deliberative and reac-
tive behaviours produced by a hybrid neural architecture.
The architecture consists of a Shunting Model (SM) and
Decision Network (DN). The animats’ goal is to locate the
resource on each RC world within 100 time-steps, while
avoiding harmful objects. Once the resource is obtained
animats proceed to the next RC World. Each world increases
in complexity via an expanding river obstruction between
animat and resource. Animats must learn to build bridges to
cross the river.

2.1.1. RC World. RC worlds are constructed in a 20x20
bounded grid in which each cell can contain zero or one of
each of four object types: stone, trap, water and resource;
a cell containing none of these is deemed to contain grass.
Traversing over a trap or water kills an animat; stones can
be picked up and put down. Complexity is enforced by
water placed across the world, creating a river obstacle.
When placed on water, stones can create a bridge. Fitness
is an integer from O to 4, determined by the number of RC
worlds in which the animat reaches the resource. Animats
are evaluated first of a world with river width O (no river),
then 1, 2 and 3, stopping at first failure.

2.1.2. The Decision Network. The DN is a standard feed-
forward neural network that dictates how desirable or un-
desirable an object type is, and whether an animat should
pick up or put down a stone. Topology consists of six
inputs, four hidden nodes and five outputs. There are five
binary inputs representing the presence or absence of each
object type (including one for grass) and a sixth representing
if the animat is carrying a stone. There are four outputs
corresponding to the desirability of each object type and a

fifth used to determine whether the animat should pick up or
put down a stone. Output neurons use a hyperbolic tangent
activation function and then the iota values below, within
and above the range [-0.3, 0.3] are converted to -1, 0 and 1
respectively. These iota values indicate the saliency of the
attributes in the environment.

2.1.3. The Shunting Model. The SM is a topographically
ordered neural network that produces a short trajectory
between two positions in a dynamic environment without
a learning process. First used in Meng and Yang [19], the
SM was applied to real-time robotics to solve maze-type
problems by mapping the physical environment to positional
neurons. Activity from desirable states propagates through
the network to create an activity landscape. Peaks form at
objectives and valleys at states to avoid. In the RC task the
state attributes are provided via the DN and diffused via
the following equation:

. 1
2" = min 3 Z [z;]* + I;, max; 1)
JEN;

where 7" is the activation of neuron ¢; I; is the external
input determined by the attributes present in cell #; N; is
the receptive field of 4; max; is the maximum iota value
(15). Equation 1 is iterated fifty times to allow activity states
to propagate and stabilize across the 20x20 array of SM
neurons, as shown in figure 1. Previous RC implementations
of the SM used the Additive Model, but in extended work
the implementation has changed for simplicity and clarity
while maintaining the same behaviour [18].

The SM works well in combination with relatively small
worlds by representing a practical overview of one’s sur-
roundings. However, this SM implementation is impractical
with larger worlds, since it provides animats information
outside of realistic visual range via an omnipresent view of

their environment. A limited visual radius has been used to
address this problem in Borg and Channon [16].

2.2. NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) was
introduced by Stanley and Miikkulainen [8] as a novel
neuroevolutionary method that concurrently evolves the
weights and topology of an artificial neural network. NEATs
evolutionary process utilises an initial population of small
and simple networks which complexify over generations,
thus leading to increasingly sophisticated behaviour. The
three main components of this process are: 1) Crossover,
2) Speciation and 3) Complexification; each made practical
via historical markings which incorporates an incremental
innovation number to each gene. The genome representation
is a linear order of link and node mutations. Topologies are
compared by lining up each gene and comparing innova-
tion numbers and content, thus avoiding expensive analysis.
Genes either contain the same links (matching) or do not
(disjoints and excess); these factors can be used to define
species. Speciation operates dynamically via a similarity
threshold. Speciation prevents the global population from
converging on local optimums by individuals only com-
peting in their niches. Therefore, structural innovations are
protected and allowed time for optimisation via mutation
and crossover. Crossover between structurally similar indi-
viduals, in theory, avoids the Competing Conventions prob-
lem. NEAT has proven itself in various task domains such
as competitive robot control [20], a crash warning system
[21] and Go [8]. Extensions include FT-NEAT, rtNEAT and
CPPN-NEAT, the latter being fundamental to HyperNEAT.

2.3. Hypercube-based NEAT (HyperNEAT)

HyperNEAT is the indirect encoding extension of NEAT
[9] that utilises a Compositional Pattern Producing Net-
work (CPPN) to encode the weights of a representation
network, known as the substrate. CPPNs were devised as
an abstraction of natural development encoding to generate
complex, regular and geometric patterns [22]. CPPNs have
been shown to produce patterns with structural components
similar to those observed in nature, including repetition,
repetition with variation, symmetry and imperfect symmetry.
Regularities are tied to specific activation functions, such
as sine for repetition and Gaussian for symmetry. Varying
activations in combination have the potential to produce
complex patterns. Visual affirmation of CPPNs ability to
produce natural biological patterns is seen on the on-line
service Picbreeder [22]; users collaborate to construct im-
ages through interactive evolution. Deep neural networks
and other human users are able to recognize and classify
the produced images into sensible categories [23]. CPPNs’
structural similarity to ANNSs allows evolution to use NEATS
established benefits, with the addition of an evolvable ac-
tivation function within each node. Weights for each link
are provided by a CPPN using the positional coordinates of
each links starting and ending node. Geometric properties

of a task domain can therefore be exploited, provided that
an appropriate substrate is used.

3. Experiment Setup

The following sections will address various design con-
siderations with the RC task and HyperNEAT.

3.1. RC Task

The DN will be pre-evolved to achieve the highest fitness
in the conventional RC task, for this work aims to replicate
the SM. The SMs full capabilities would include preventing
negative values from propagating in the activity landscape.
This addition would require contrasting activation functions
in the substrate, such as Rectified Linear Unit (ReLU), or
an architectural change, such as the addition of a hidden
layer or separate inputs for negative and positive values.
HyperNEATS ability to achieve the primal navigation func-
tionality of the SM is not yet known, so this feature will be
reserved for future work. Therefore, undesirable objects will
not be used for inputs, but instead deducted directly from
the activity landscape so they will continue to be avoided.
Inputs will be provided by the pre-evolved DN. Outputs will
map directly to the activity landscape. Animats will follow
the highest activation neighbour, as in the conventional RC
task and other HyperNEAT implementations [13].

An additional fitness function will be simulated due to
the change in task domain. The original fitness function
assesses how successful an animat was on a selection of
four RC worlds and does not translate to the animats general
success. An SM replacement must be able to achieve equiva-
lent results in all RC world combinations. For more granular
feedback, the new fitness function uses the mean from 10 RC
task runs. Animats will have to consistently build bridges
in different environments to survive. This modified fitness
function can be viewed as a larger environment with each
RC task being a limited section of that environment.

3.2. HyperNEAT

The substrate design is important to the performance
of HyperNEAT, as established in previous work; a general
substrate design can prove successful in a variety of different
task domains [24]. The sandwich substrate is one high-
lighted in existing literature; it has been used successfully in
locomotion with no obvious geometric relationship between
sensor positions and substrate inputs [24, 25]. To avoid
the bias of expert domain knowledge, this work uses the
sandwich substrate with 20x20 input and output layers. Ad-
ditionally, links with weight values less than 0.2 or greater
than -0.2 were discarded in previous implementations. This
restriction is removed in this work, thus allowing greater
nuances in the encoding pattern.

Two CPPN input variations will be simulated. Standard
CPPN inputs for the majority of HyperNEAT experiments
include z1, x2, yl, y2 and a bias. Delta inputs (z1 -

Fitness

0 50

100 150 200

Generation
*F-D < F-nD # nF-D * nF-nD

Figure 2. Mean fitness of the fittest individuals from twenty-five runs of the RC Task. Error bars represent standard deviations. (F-D = Fitness Modification
with Delta inputs. F-nD = Fitness Modification without Delta inputs. nF-D = No Fitness Modification with Delta inputs. nF-nD = No Fitness Modification

without Delta inputs.)

22) (yl - y2) are included in certain experiments allowing
patterns to emerge from relative distances. Delta may aid
in the SMs reliance on relative patterns, as activity values
degrade more the further away from a desirable object they
are. A comparison between delta and non-delta will reveal
whether distance information yields benefits in this task, or
if absolute inputs can achieve the same quality results, as
seen in other work [26].

HyperNEAT parameters are vital for tuning [27]; how-
ever, the parameters within the original package (Checkers,
Go, Robot Arm) remain broadly similar with only the topo-
logical mutation rate and population size deviating for each
experiment. A lower than average topological mutation rate
(0.05%) and a large population size (1000) will be used, as
appears to be the trend with complex tasks in the original
package.

Finally, HyperNEAT is used in this work over the more
advanced HybrID and ES-HyperNEAT, due to this task’s
requirements. Until recent extensions to HybrID, which uses
both direct and indirect encoding, a pre-known evolutionary
generation was required to switch encoding strategy once
performance had plateaued [28]; domain specific knowl-
edge, such as this, will be avoided in this work. ES-
HyperNEAT is only applicable for networks with hidden
layers, which this task does not require, due to the theoretical
simplicity of a successful encoding pattern.

3.3. Results

Twenty-five runs for 200 generations were carried out,
for each HyperNEAT approach, on the RC task. Each

approach is separated with the use of a fitness modifier
(Section 3.1) and delta inputs (Section 3.2). Each method is
named as follows:

o F-D: Fitness Modification with Delta inputs

o F-nD: Fitness Modification without Delta inputs

« nF-D: No Fitness Modification with Delta inputs

« nF-nD: No Fitness Modification without Delta inputs

The goal is to assess performance of each approach
comparatively and against the SM, with a focus on general
performance. Performance is represented as the fittest indi-
vidual, due to NEAT’s use of speciation, which purposely
produces suboptimal individuals to prevent the population
from converging on local optimums, as discussed in section
2.2. Figure 3 demonstrates this with an overview of a
population’s performance over generations using the original
RC fitness function and the fitness modification.

Scores for the fittest individuals from all the runs were
collected and aggregated, as shown in figure 2. From this
graph every run was able to solve the highest level of
difficulty the RC task requires, and maintains it. Each delta
counterpart saw some statistical advantage in early genera-
tions over the non-delta inputs (p < 0.05), but this fluctuated
each generation and by the 123rd generation there was no
statistically significant difference between strategies.

The fittest animats from each run were evaluated in
the robustness test for each river width, which simulated
the animats through 10% static RC world configurations.
Animat’s performance on this test represents their ability
to adapt to general environments. Comparing figure 2 and 4
it can be seen that performance on the fitness functions did

gsaund

(a) Orignal RC Fitness Function

gsouild

(b) Fitness Modification

Figure 3. Representation of HyperNEAT’s fitness score in a population
without (a) and with (b) the fitness modification. Simulated over 200
generations, a maximum fitness of 4 and population size of 1000.

not translate to general performance. RC worlds with river
width 0 and 1 achieved a consistent 93-94% completion
with the fitness modification, with and without delta. The
original fitness function’s performance saw a larger devia-
tion and spread across a lower completion range, 80-87%.
RC worlds with river width 2 see a drop in performance
on all approaches, and a subsequent drop at river width
3. Table 1 displays the p values from a two sample t-
test between delta and non delta approaches. When using
the fitness modification, delta inputs provide a significantly
higher completion percentage during the more complicated
RC worlds with river width 2 and 3. All approaches with the
fitness modification saw a statistically significant advantage,
compared to their counterparts without.

Runs were extended to higher generations to assess
if fitness had plateaued in general performance, due to
the disparity between the fitness functions and the general
performance. Figure 5 displays the mean completion in the

Worlds Complete

100%
2 3

1
75% A
50% -
25% -
0% 1
0
River Width

B F-D " F-nD # nF-D B nF-nD B Shunting Equation

. I
I
I I
|
1'

Figure 4. Completion rates of Robustness Test, using each HyperNEAT
approach. Individuals simulated are the fittest at generation 200 from all
runs, Twenty-five runs, per approach, per river width. Error bars represent
standard deviations. (F-D = Fitness Modification with Delta inputs. F-nD =
Fitness Modification without Delta inputs. nF-D = No Fitness Modification
with Delta inputs. nF-nD = No Fitness Modification without Delta inputs.)

TABLE 1. p VALUES FROM TWO SAMPLE T-TESTS BETWEEN DELTA
AND NON-DELTA APPROACHES, USING THE ORIGINAL FITNESS
FUNCTION AND FITNESS MODIFICATION, IN THE ROBUSTNESS TEST.
INDIVIDUALS SIMULATED ARE THE FITTEST AT GENERATIONS 200.

Two Sample T-Test (p values)
[River 0 [River 1 [River 2 [River 3

F-nD [0.8902 [0.809
nF-D

nF-nD | 0.01862 | 0.806

| 0.01796 [0.002184

[0.5363] 0.3156

robustness test at river width 3 with an extension to 500
generations. Performance for each fitness function appears to
stay relatively consistent with results achieved at the original
generation 200. However, the fittest individual achieved its
highest performing completion at generation 356 and after
3004 generations the performance appears less volatile than
in the preceding generations. The original fitness function
appears noisy in general performance. In contrast, the fitness
modification can produce greater consistency at a higher
completion rate and in turn produced the fittest individual.

Individuals with high completion percentages in the
robustness test produced similar functioning activity land-
scapes. However, none resembled the SM. Figure 6 shows
an example of activity landscapes produced by an individual
with a 95.9% completion on the robustness test at river
width 3. Animats which require stones are directed south of
the river by the activity landscape. Once a stone is carried,
animats are directed to the furthest north position with a
peak at the resources location. This forces the animat north

100%

75%

50% -

Fitness

25%

100 200

300 400 500

Generation

* F-D - Fittest * nF-D < Shunting Model

Figure 5. Completion rates of Robustness Test at River Width 3 using HyperNEAT with and without the fitness modification. Twenty-five runs, per
approach, for 500 generations. Error bars represent standard deviations. (F-D = Fitness Modification with Delta inputs. nF-D = No Fitness Modification
with Delta inputs. Fittest = The individual with the the highest completion percentage from all runs from any approach.)

until the river is interacted with, at which point the stone is
placed upon the river. Animats will then again return south
to acquire stones, and continue until a bridge is complete.

3.4. Discussion

No HyperNEAT implementation could produce the same
quality of deliberate, robust motion planning when com-
pared to the SM at any river size. Solutions at river width
0 and 1 produce relatively consistent results, but a per-
formance degradation occurs at river width 2 and there
is a further drop at river width 3. Beyond river width 1
the task requires new behaviours: such as the deliberate
movements from river to stone after placing a stone on
the river and the construction of a connecting bridge. Each
increment in river width correlates to the need for greater
sophistication in both these behaviours. Therefore, the drop
in performance suggests HyperNEAT solutions lack these
deliberate planning skills. However, practical HyperNEAT
implementations are possible. Individuals with the fitness
modification and delta inputs were found achieving 90%-+
RC world completions on the most difficult tasks.

Figures 4 and 5 shows that the fitness modification pro-
vides superior general performance. The modification allows
the obvious benefit of multi-performance feedback. Figure 3
also shows the benefit during evolution. In comparison, the
original RC fitness function only provides five fitness states
for diversity to occupy. A relatively large amount of the
population then remains at fitness 0 throughout. The fitness

modification was used to simulate a larger environment for
greater avenues of learning feedback; however, there are
issues with the current representation. Currently animats
can fail a RC world, such as drowning, and continue to
attempt the task again. This would not be possible in a
larger environment, as animats may still fail at these early
stages leading to poor un-robust evolved behaviours as seen
in the original fitness function. The fitness modifier provides
a larger impact overall when compared to the delta coun-
terpart. However, used in combination there is a statistical
advantage in the more difficult tasks.

Delta inputs and the fitness modification show an ad-
vantage at river width 2 and 3, as seen in table 1. At these
river widths, animats require greater deliberative behaviour.
The benefits of deltas may be related to creating relational
patterns around activated inputs, therefore providing contex-
tual awareness of nearby objects such as stones. Absolute
inputs could theoretically also achieve these patterns, albeit
at greater difficulty and evolutionary cost. However, just
how deltas provide an advantage is not clear from observing
successful activity landscapes, as solutions appear to rely on
linear patterns.

Successful HyperNEAT solutions exhibit a funnelling
type behaviour that was proven reliable for general perfor-
mance on the robustness test, as shown in figure 6. At the
simplest interpretation, an animat will move north or south
depending on whether a stone is being held. Figure 6 (a
and c) shows that when stones are desirable evolution has
discovered being south of the river is beneficial for locating

¢
5
",

¢
0
)
)

¢
W
%
9%
)

o
)
G
)
)

"

9,
)
N

5
0

5
1
5
XKD
0
0
%

X
n’o::‘
X9

X
"%

X
)
)
W
0
K
o:o
%

(X
X
0
¢,
AR
e
o
)
5
X
\
(X
X
X
5
)
o
o
&
0

B

X

)
.
\

X
§
&
5
(X
5
5

&S

XX

RS

9,
)

<2

(>
£
X0
X

%
¢

o

%
\
\

(a) RC World (b) Holding Stone

0

b

XXX
(XX
R

500
0

S
S N

()
)
(X

$
XOOXX)

()

A
)

5
oy
)

%
QXK
o

)

"Qﬁ’

0
X0
5
i
2R
08
e
W
0
X
)
OGN

%

5
58
%
A
0

)
CXAXXXXXXXY

XX
RRRN

i
\

)
n
i
%
SN
R
QXS

R

5
o
X
B
%
0
£
&8
5
)
X

f
X
5
5
5

8
KRNI

AXAXKXXXXXXXXXD
(XUCKXXXXXXXXXD
Y

XX

Y
‘:
%
.

A

SR
RO
&
Y

\

5
K
0
5
2
e
00
X0
R
Q
¢
¢
)
5

X
0
)
o
5
X

()

0
0
0
‘0

4
%
\

"

%
\

%
K
o
"

%
\

(c) Stones Only (d) Resource only

Figure 6. RC worlds (below) with their corresponding activity landscapes (above). Each activity landscape is produced by the fittest individual in the

robustness test.

stones. The highest activation points are those furthest south.
Once a stone is placed on the river and another has to be
collected, the further south an animat moves the greater its
likelihood of interacting with another stone. Figures 6 (b
and d) show how an animat will traverse to the resource
once a stone is obtained. Despite positive general results
on river widths 0 and 1, there is a problem in practice,
as animats’ movement lack the compelling behaviours of
believable, deliberate motion “planning required for robust
performance on wider rivers.

Animats take complex, longer paths to stones in the
RC world while ignoring those in their immediate neigh-
bourhood. This can lower animats’ success due to their
100 steps limit, but more importantly it appears to show
a lack of intelligent or deliberate decision-making. This
is most common after the completion of a bridge, since
animats will proceed back to a stone before obtaining the
resource. In comparison, the SM produces a local activity
field around the resource that allows animats to proceed
toward it once the bridge is complete. Animats from the RC
3D simulation in Stanton and Channon are able to exhibit
life-like responses, due to their reaction to the activity space
[18], which some observers have described as resembling
surprise, confusion and even happiness. HyperNEATs fittest
model may lose these subtle behaviours if it were to replace
the SM in the RC 3D system. Although, a case can be
made that if animats are completing RC worlds within a
reasonable time frame, which all completions are required
to do, their behaviours are deliberate but inefficient.

3.5. Conclusion and Future Work

HyperNEAT has demonstrated the capability to produce
feasible deliberate and robust motion planning, but in this
task not to the quality of a pre-designed solution. These

results were achieved using a general HyperNEAT config-
uration with no problem-specific aspects of the network
design. The performance maintained a great level of con-
sistency (90%+) in locating the resource and simple bridge-
building with a multi-evaluation fitness function, show in
in figure 4. Mean performance drops to a respectable level
(80%) at the most difficult deliberate task, but individuals
can still be found 3-4% below the performance of the SM,
as shown in figure 5. Additional evaluations may further
improve performance and should be investigated. This work
also demonstrates the importance of relative distance in-
formation in producing greater general solutions at more
difficult deliberate tasks.

During simulation, there are inefficient choices in an-
imats’ motion planning decisions. However, their actions
are still considered deliberate due to the completion of
difficult tasks within a time constraint. Simulating a larger
environment with a multi-evaluation fitness function may
not be applicable in practice. Future iterations of this model
could introduce fatal events, to prevent animats that fail at
a task from receiving a fitness reward.

Finally, further work can now be taken to incorporate
the other network functions. Such as the feature of avoiding
undesirable inputs and incorporating the decision network’s
ability of defining objects desirability. Removal of these
constraints would better allow the possibility to adapt to
future tasks

References

[1] L. Wiklendt, S. K. Chalup, and M. M. Seron, “Sim-
ulated 3D biped walking with an evolution-strategy
tuned spiking neural network,” Neural Network World,
vol. 19, no. 2, p. 235, 2009.

[2] E. D. Vaughan, “The evolution of an omni-directional
bipedal robot,” Ph.D. dissertation, Sussex, 2007.

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K. Wolff, J. Pettersson, A. Heralic, and M. Wahde,
“Structural evolution of central pattern generators for
bipedal walking in 3d simulation,” in Systems, Man
and Cybernetics, 2006. SMC’06. IEEE International
Conference on, vol. 1. 1EEE, 2006, pp. 227-234.
M. Van de Panne and A. Lamouret, “Guided optimiza-
tion for balanced locomotion,” in Computer animation
and simulation, vol. 95. Springer, 1995, pp. 165-177.
D. Hein, M. Hild, and R. Berger, “Evolution of biped
walking using neural oscillators and physical simula-
tion,” RoboCup 2007: Robot Soccer World Cup XI, pp.
433-440, 2008.

J. H. Solomon, M. A. Locascio, and M. J. Hart-
mann, “Linear reactive control for efficient 2d and 3d
bipedal walking over rough terrain,” Adaptive Behav-
ior, vol. 21, no. 1, pp. 29-46, 2013.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436444, 2015.

K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolution-
ary computation, vol. 10, no. 2, pp. 99-127, 2002.
K. O. Stanley, D. B. D’Ambrosio, and J. Gauci,
“A hypercube-based encoding for evolving large-scale
neural networks,” Artificial life, vol. 15, no. 2, pp. 185—
212, 2009.

S. Risi and K. O. Stanley, “An enhanced hypercube-
based encoding for evolving the placement, density,
and connectivity of neurons,” Artificial life, vol. 18,
no. 4, pp. 331-363, 2012.

J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria,
“On the performance of indirect encoding across the
continuum of regularity,” IEEE Transactions on Evo-
lutionary Computation, vol. 15, no. 3, pp. 346-367,
2011.

J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock,
“Evolving coordinated quadruped gaits with the Hy-
perNEAT generative encoding,” in Evolutionary Com-
putation, 2009. CEC’09. IEEE Congress on. 1EEE,
2009, pp. 2764-2771.

M. Hausknecht, P. Khandelwal, R. Miikkulainen, and
P. Stone, “HyperNEAT-GGP: A HyperNEAT-based
atari general game player,” in Proceedings of the 14th
annual conference on Genetic and evolutionary com-
putation. ACM, 2012, pp. 217-224.

J. Drchal, J. Koutnik, and M. Snorek, “HyperNEAT
controlled robots learn how to drive on roads in
simulated environment,” in Evolutionary Computation,
2009. CEC’09. IEEE Congress on. 1EEE, 2009, pp.
1087-1092.

E. Robinson, T. Ellis, and A. Channon, ‘“Neuroevo-
Iution of agents capable of reactive and deliberative
behaviours in novel and dynamic environments,” in
European Conference on Artificial Life, 2007, pp. 345—
354.

J. M. Borg and A. Channon, “Evolutionary adaptation
to social information use without learning,” in Euro-
pean Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 837-852.

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

B. P. Jolley, J. M. Borg, and A. Channon, “Analysis of
social learning strategies when discovering and main-
taining behaviours inaccessible to incremental genetic
evolution.” in SAB, 2016, pp. 293-304.

A. Stanton and A. Channon, “Incremental neuroevo-
lution of reactive and deliberative 3d agents,” in Ad-
vances in Artificial Life, ECAL 2015: Proceedings of
the Thirteenth European Conference on the Synthesis
and Simulation of Living Systems. Keele University,
2015, pp. 341-348.

M. Meng and X. Yang, “A neural network approach
to real-time trajectory generation [mobile robots],” in
Robotics and Automation, 1998. Proceedings. 1998
IEEE International Conference on, vol. 2. IEEE,
1998, pp. 1725-1730.

K. O. Stanley and R. Miikkulainen, “Competitive co-
evolution through evolutionary complexification,” J.
Artif. Intell. Res.(JAIR), vol. 21, pp. 63—100, 2004.
K. Stanley, N. Kohl, R. Sherony, and R. Miikkulainen,
“Neuroevolution of an automobile crash warning sys-
tem,” in Proceedings of the 7th annual conference on
Genetic and evolutionary computation. ACM, 2005,
pp. 1977-1984.

J. Secretan, N. Beato, D. B. D Ambrosio, A. Ro-
driguez, A. Campbell, and K. O. Stanley, “Picbreeder:
evolving pictures collaboratively online,” in Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2008, pp. 1759-1768.
A. M. Nguyen, J. Yosinski, and J. Clune, “Innovation
engines: Automated creativity and improved stochastic
optimization via deep learning,” in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015, pp. 959-966.

J. Clune, C. Ofria, and R. T. Pennock, “The sensitivity
of HyperNEAT to different geometric representations
of a problem,” in the 11th Annual conference. New
York, New York, USA: ACM Press, 2009, pp. 675—
682.

S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune,
“Evolving gaits for physical robots with the Hyper-
NEAT generative encoding: The benefits of simula-
tion,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2013, pp. 540-
549.

J. Gauci and K. Stanley, “Generating large-scale neural
networks through discovering geometric regularities,”
in Proceedings of the 9th annual conference on Genetic
and evolutionary computation. ACM, 2007, pp. 997-
1004.

K. O. Stanley, J. Clune, D. B. DAmbrosio, C. D.
Green, J. Lehman, G. Morse, J. K. Pugh, S. Risi,
and P. Szerlip, “CPPNs effectively encode fracture:
A response to critical factors in the performance of
HyperNEAT,” Technical Report CS-TR-13-05, 2013.
L. Helms and J. Clune, “Improving HybrID: How to
best combine indirect and direct encoding in evolution-
ary algorithms,” PloS one, vol. 12, no. 3, p. 0174635,
2017.

