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Abstract—Bipedal walking is a difficult behaviour to encode
into an evolutionary neural network, particularly in three-
dimensional environments. Agents must be constantly main-
taining balance alongside their primary objectives. Here we
re-implement a simple evolutionary bipedal system, achieving
high fitness and stepping gaits in 3D without the preliminary
2D bootstrapping process required by the original work. This
high-performing system, with its deliberately simple neurocon-
troller, provides an excellent foundation for the community to
use for the evolution or learning of more complex behaviours
in bipeds. We also investigate the effects of modified mor-
phology with the system, significantly improving agent fitness
by evolving networks alongside morphologies resembling a
baby albatross. The agents with albatross morphologies travel
up to three times further than default agents. We then test
incrementally evolving agent morphology via the simultaneous
evolution of a separate morphological genotype. We initialised
this genotype either alongside a high-performing controller or
from a completely random point in both fitness landscapes.
Agents evolved from this random initialisation travel up to four
times further than default agents. One randomly initialised
incremental morphology also achieves gaits with significantly
higher upper body and swing knee controller input weights
than the default.

1. Background

Bipedal locomotion has been the focus of many studies
[22]. Its emergence has been linked with endurance running
[2] and tool use [11]. The main challenges for bipedal
agents are balancing and generating cyclic motion across
two limbs. In robotics, bipedal walking is often achieved
through zero-moment point computation [21], for evaluating
stability [8].

Initially, bipedal systems utilised Central Pattern Generators
(CPGs) as a control network for neuroevolution. CPGs
are recurrent neural networks that produce rhythmic
output from a linear input set [10]. Modelled after pattern
generators found in human and animal spines, they offer a
biologically inspired solution; demonstrated in [19], [12]
and [20]. Reil et al. used a genetic algorithm to evolve

CPG network weights, producing a stable bipedal walking
agent [15]. Measuring fitness as distance from the point
of origin, they achieved a 10% stability success rate. This
increased to 80% through the introduction of an oscillation
bonus in the fitness function. Reil et al. added sensors
to achieve turning behaviours. Turning was also achieved
in [9], using evolution strategies [1] to produce efficient
CPG-based walking behaviour, both in simulated and
real-world bipedal agents.

In more recent works, bipedal agents have used simpler
control schemes than the CPG. Solomon et al. used a
genetic algorithm with a simple network to evolve bipedal
gaits for rough terrain walking [18]. Their agents contained
multiple perceptron-like ‘Linear Reactive Control’ networks
as controllers, seen in Figure 1. One of these networks
separately controlled each actuator. Solomon et al. evolved
these controllers incrementally, seeding each stage of
evolution with the fittest agents from the previous stage.
In the inital stage, only angular inputs for the joint being
actuated were fed to each network, but later configurations
fed every joint input to every network. The end result was
stable 3D walking on flat terrain with a 12% fall rate and
a rough-terrain fall rate of 17%. Despite the simplicity of
this system, early controllers had to be evolved on a 2D
model, before being seeded into a 3D model. Here we
will re-implement the system seen in [18] directly into
3D, without prior 2D processing. We hope this simplified
system could provide a common starting point for future
evolutionary bipedal work in the scientific community.

Morphology also plays a role in agent locomotion.
McGeer designed a walker which travelled down a slope
using gravity as its sole source of energy, moving its
legs in a natural swinging motion [14]. Dubbing this a
“passive dynamic walker”, it highlighted the potential
of replacing sections of a controller with morphology.
Collins et al. added passive swinging arms and knees to
robotic walkers; demonstrated in [5] and [6]. Through this
methodology, Collins et al. evolved stable gaits for both
in-phase and anti-phase swinging. They also tested binding
human subjects’ arms during walking, which demonstrated
higher upper body momentum when unbound. In non-
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Figure 1. A linear reactive controller, from [18]. Solomon et al. ’s walkers
contained a separate controller for each actuator, producing a desired angle
value from a linear vector of inputs. The desired angle value was then fed
into a Proportional Derivative controller to produce actuator torque value.

Figure 2. Our re-implemented walker in 3D, based on [18].

bipedal agents, Calisti et al. investigated the effects of
mid-lifetime morphological changes on locomotion [3].
They employed a soft, underwater, octopus-like robot, as
an underwater environment could accommodate walking,
running and swimming gaits; this allowed for easier
transitions. They produced multiple distinct gaits which
could transition into each other. This included walking,
running, and sculling, thanks to the robot’s soft appendages.

The baby albatross has a set of fluffy feathers on its
underbelly that soften impacts and allow it to roll upright
to regain balance. Feathers are theorised to have emerged
from scales in order to repel water and produce an airtight
barrier [7]. Their softness was also proven to assist with
adjusting flight trajectory, both in simulated [16] and
real world [4] agents. We will apply albatross-based
morphologies to our re-implementation and demonstrate
the increase in fitness they provide. We will also investigate
incremental morphological evolution: seeding new agent
populations with the controllers of previous winners, in
order to simultaneously evolve morphologies capable of
more human-like gaits. In order to assess these gaits,
we will analyse the genotypes of our successful agents,
observing which has the highest input weights for each
controller.

2. Methods

2.1. Re-implementation

Solomon et al. [18] used a linear reactive network to
produce a torque value for each actuator, seen in Figure 1 .
Each agent contained 2 thigh segments, 2 shank segments,
2 feet segments and an upper body segment. Actuators at
the hip, knee and ankles joined these segments together.
The 3D model featured an extra lateral hip actuator in the
centre of the upper body and passive lateral ankle joints.
Solomon et al. fed a set of inputs to each controller: joint
angles, joint angle differentials (also referred to as velocities
in Figure 1), a flag for both feet touching the floor, and a
bias. These inputs were then normalised and multiplied by
a set of weights; they evolved these weights as the agent’s
genotype. After this, they summed the resulting values to
form the desired output angle values. The desired angle
values were then fed through a Proportional Derivative (PD)
controller [13], modifying the angle values in response to
the size and derivative of their previous error; this produced
final torque values for the actuators. Solomon et al. tested
several control variations: Local Proportion, where only
angles and derivatives for the actuator’s joint were fed to
each network; Fully Connected, where every joint angle
and derivative was fed to each network; and Reduced
Sparsely Interconnected, where the networks were pruned
down from a fully connected state until fitness sufficiently
degraded. They evolved the first two network configurations
in a 2D physics engine; successful controllers from their
populations were then seeded into the 3D engine and
pruned down. Solomon et al. measured fitness as distance
travelled forwards. Termination occurred when an agent
either fell over, segments above the thigh contacted the
ground, or a lifetime torque allowance across all actuators
was exceeded. In this way, efficient gaits were promoted
which were more likely to resemble natural gaits; energy
efficiency is important for survival in most species. In each
generation, the algorithm selected the top 20% of agents by
fitness to be parents. Their offspring were then produced
through mutation, single-point pointwise crossover or
both. Each network had its own mutation rate which was
evolved as part of the genotype, initialised at a value of
0.1. Elitism retained the best-performing agent of each
generation. This allowed for better navigation of the rugged
bipedal fitness landscape. The top 20% of agents in the
last 10% of generations were compared to select a winner.
This method recovered lost behaviours from penultimate
generations that were potentially more successful. We
chose Solomon et al. ’s work for re-implementation as the
rough terrain results demonstrated robust behaviour, using
a deliberately simple controller for bipedal locomotion. The
aim of our work was to develop this into a better foundation
for the future evolution of more complex bipedal behaviours.

In order to evolve the system in 3D from scratch
with the simple linear reactive control scheme, we modified
the existing system seen in [18]. We created our re-
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Figure 3. (left) The square base morphology with the square-based sphere
visible. (right) The same walker without, demonstrating the shorter legs.

implementation with the Open Dynamics Engine [17]; it
featured bipedal agents configured with identical body
parameters to the original work, seen in Figure 2. The
genetic algorithm used was also identical, with a population
size of 150 for 500 generations. The agents contained six
linear reactive controllers, with inputs configured identically
to the Partially Connected controllers described above.
Unlike the original networks, our linear networks did not
contain PD controllers. Instead, the desired angle values
were multiplied by a speed constant and then set as the
velocity parameter for each actuator. There were also no
lateral joints in our 3D model, in order to reduce the size
of the fitness landscape. Agents were initialised standing on
one leg with the other swinging up, away from the ground.
By starting in a swinging motion, they could transition into
a cyclic gait with less difficulty. We replaced torque limits
with a 60 second lifetime; a flight phase, both feet being off
the ground, was also permitted. This allowed the agents to
exhibit more motion rather than prioritising efficiency. We
also applied 20% elitism. By applying these modifications
to the system, we were able to evolve successful bipedal
agents entirely in 3D.

2.2. Albatross Morphology

2.2.1. Square Base. The first albatross morphology tested
is referred to as the square base morphology. The morphol-
ogy featured a large sphere segment attached to the upper
body, with a lower cuboid segment to give the sphere a
square base. This would resemble the lower body of a baby
albatross. The legs were also scaled to half length to allow
the sphere to contact the ground. Shown in Figure 3, we
aimed for this morphology to allow bipedal agents to roll
back onto the base using the sphere; after this the square
base would allow them to realign themselves, keeping the
legs parallel with direction of travel. To achieve this, the
sphere was exempt from the system’s fall condition when
it contacted the ground. Whilst this technically prevented
the bipedal agent from falling, it did not guarantee higher
fitness or longevity.

2.2.2. Big-Tucked. The second morphology tested is re-
ferred to as the big-tucked morphology. Shown in Figure 4,

Figure 4. (left) The big-tucked morphology with the big sphere visible.
(right) The same walker without, highlighting the inverse knees, shortened
feet and white counterweight between the legs.

it featured a vastly larger sphere attachment, without a
square base. A small spherical counterweight was also added
inside the larger sphere. We hoped these would enable
agents to roll back upright, much like the square base
morphology. As well as this, we also modified the knees
and feet. The baby albatross exhibits legs that appear to
bend inwards, to fold away when they sit; in fact this is
an ankle joint, with an elongated foot. We inverted our
agents’ knee joint limits to resemble this. Aiming for this
to allow agents to similarly tuck their legs away into the
larger sphere, we also hoped it would allow them to lift
themselves off the ground, akin to a scissor lift. The feet
were shortened to prevent the agents from using the tucked
legs to drag themselves along instead of stepping. This
morphology was also not able to fall due to the larger
sphere’s contact exemption.

2.2.3. Incremental Morphological Evolution. We also
tested incrementally evolving the two albatross morpholo-
gies. This involved seeding new agent populations with the
genotypes of high-performing agents from previous runs.
To better achieve this, we created a separate genotype for
the agents’ morphology. This featured two genes: a single
multiplier value, applied to both the upper and lower leg
lengths, and a mutation rate. The multiplier gene value was
limited to being between the albatross leg length (multiplier
value of 1) and the default length (multiplier value of 2). The
body genotypes were simultaneously mutated and crossed
over with the same methodology as the controller genotypes.
We aimed to take the shorter-legged albatross morphologies
and evolve them back to default proportions, whilst retaining
their increased performance. We tested evolving agents with
seeded (referred to in later sections as preloaded) genotypes
from high-performing albatross agents, and also agents with
both genotypes randomly initialised.

3. Results

3.1. Re-implementation

We evolved each tested morphology in the re-
implemented system as a set of twenty runs, measuring
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fitness as distance travelled forwards from the origin. Agents
failed when any part of the body above the knee but besides
the sphere attachments contacted the ground (a fall), or they
exceeded a 60 second lifetime. Compared to the original
work, our default morphology agents did not perform as
well. They were not able to walk on rough terrain, or travel
similar distances. Despite this, as seen in Figure 9, they were
still able to achieve walking gaits. They also still travelled
for some distance before falling over. Agent legspan was
around 1.2, and Figure 5 shows distances travelled as high as
30. As well as this, all of the gaits in this work were evolved
in 3D from scratch with no prior processing. We suspect the
main reason for the decreased performance was the lack of
3D actuators (passive ankle tilt and lateral hip actuation)
seen in the original work’s 3D model. More lateral control
would allow for increased balance, to avoid falling sideways
during a stepping motion.

3.2. Square Base and Big-Tucked

Figure 5 shows the fitness of the twenty winning default,
square base and big-tucked morphologies. The square base
had a much higher median than the default, but a larger
range. The big-tucked morphology had a slightly larger
median than the square base, and a shorter range. Both the
square base (Mann-Whitney U=10, n1=n2=20, p=1.008e-09
one-tailed, without correction for multiple comparisons) and
the big-tucked (Mann-Whitney U=0, n1=n2=20, p=7.254e-
12 one-tailed, without correction for multiple comparisons)
were significantly fitter than the default. Figure 6 shows
the average fitness curves for twenty of each morphology.
The square base and big-tucked morphologies evolved at a
slower pace but achieved final fitness values around three
times higher than the default.

3.3. Incremental Square Base and Big-Tucked

Figure 7 shows the fitness of twenty winning agents
for the default and each incremental morphology type.
These included square base preloaded, square base randomly
initialised, big-tucked preloaded and big-tucked randomly
initialised morphologies. The square base preloaded (Mann-
Whitney U=0, n1=n2=20, p=7.254e-12 one-tailed, without
correction for multiple comparisons), square base randomly
initialised (Mann-Whitney U=0, n1=n2=20, p=7.254e-12
one-tailed, without correction for multiple comparisons),
big-tucked preloaded (Mann-Whitney U=36, n1=n2=20,
p=6.835e-07 one-tailed, without correction for multiple
comparisons), and big-tucked randomly initialised (Mann-
Whitney U=0, n1=n2=20, p=7.254e-12 one-tailed, without
correction for multiple comparisons) were all significantly
fitter than the default. The square base randomly initialised
had a higher median, but also a larger range than the
preloaded version. The square base randomly initialised
morphology was also significantly fitter than the preloaded
version (Mann-Whitney U=14, n1=n2=20, p=3.685e-09 one-
tailed, without correction for multiple comparisons). The
big-tucked morphologies had similar range but drastically

Figure 5. The fitness of twenty winning agents for each set of morphologies.
Def represents the default morphology, sq represents the square base
morphology and bt represents the big-tucked morphology.

Figure 6. The average fitness curves of twenty winning agents for each set
of morphologies. Def represents the default morphology, sq represents the
square base morphology and bt represents the big-tucked morphology.

4



different medians; the randomly initialised morphology
was significantly fitter (Mann-Whitney U=0, n1=n2=20,
p=7.254e-12 one-tailed, without correction for multiple
comparisons). The big-tucked randomly initialised median
was more than three times that of the preloaded version,
and more than four times the median of the default version.
Figure 8 shows the average fitness curves for these mor-
phologies. All the morphologies evolved at a similar pace,
with the big-tuckeds evolving slightly faster than the square
bases. All finished above the default, with the randomly
initialised versions outperforming the preloaded versions on
both morphologies. The difference in performance between
the two big-tucked morphologies was much greater than
that of the square bases. Finally, we recorded gait snapshots
from high-performing agents in the two fittest morphology
groups, both randomly initialised morphologies, and the de-
fault. We took each gait snapshot over the same time period,
about five seconds, at the same point during each agent’s
lifetime, in order to capture the default’s fall. Figure 9 shows
a gait from the default morphology. It exhibits a stepping
behaviour, but it is slow and unstable, eventually falling.
Figure 10 shows a gait from the square base randomly
initialised morphology. It travels forwards quickly in a can-
can like motion. Its body has not moved away from that
of the standard square base morphology. Figure 11 shows a
gait from the big-tucked randomly initialised morphology.
It travels forwards at a much higher speed than the default.
It evolved much longer legs than the standard big-tucked
morphology; these were closer to the default in length.

3.4. Genotype Analysis

To assess which morphologies were exhibiting the most
human-like gaits, we analysed their controller genotypes.
As described previously, the agents’ control networks
evolved by our system consisted of six linear controllers,
for straightforward reproduction. The agents’ controller
genotype was represented by a set of network weights for
these controllers. The controllers produced desired angle
values for the upper body, interleg, stance knee, swing
knee, stance ankle and swing ankle angles, which were
then applied as velocity parameters to the actuators. The
stance leg was the leg balanced upon whilst the swing leg
swung forwards during a gait. These roles then alternated
as agents took steps. The configuration we used only fed
angle/derivative inputs to each controller that matched the
joint it was actuating. Taking their absolute values, we
calculated the mean of each input weight from the twenty
winners for each morphology. This allowed us to observe
which morphologies’ input weights had the highest mean
values, and therefore how much each morphology utilised
each controller.

Figure 12 shows the mean input weight values for
the default, square base randomly initialised and big-tucked
randomly initialised morphologies. The square base and
big-tucked randomly initialised morphologies evolved
agents with higher upper body input weights than the

Figure 7. The fitness of twenty winners for each of the incremental
morphologies and the default. Def represents the default, sq represents
the square base morphology and bt represents the big-tucked morphology.
A suffix of p represents a preloaded morphology. A suffix of r represents
a randomly initialised morphology.

Figure 8. The average fitness curves of twenty winners for each of the
incremental morphologies and the default. Def represents the default, sq
represents the square base morphology and bt represents the big-tucked
morphology. A suffix of p represents a preloaded morphology. A suffix of
r represents a randomly initialised morphology.
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Figure 9. (left to right, top to bottom) A high performing gait from the default morphology.

Figure 10. (left to right, top to bottom) A high-performing gait from the square base randomly initialised morphology. The square based sphere attachment
is not drawn.
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Figure 11. (left to right, top to bottom) A high performing gait from the big-tucked randomly initialised morphology. The large sphere attachment and
counterweight are not drawn.

default. This aligned with the square base and big-tucked
randomly initialised gaits lasting longer than the default
gait. We also compared the morphologies’ input weights
directly without averaging, which demonstrated the square
base randomly initialised upper body angle (Mann-Whitney
U=1, n1=n2=20, p=1.451e-11 one-tailed, without correction
for multiple comparisons) and upper body derivative (Mann-
Whitney U=0, n1=n2=20, p=7.254e-12 one-tailed, without
correction for multiple comparisons) were significantly
higher than the default. The big-tucked randomly initialised
upper body angle (Mann-Whitney U=1, n1=n2=20,
p=1.451e-11 one-tailed, without correction for multiple
comparisons) and upper body derivative (Mann-Whitney
U=8, n1=n2=20, p=4.86e-10 one-tailed, without correction
for multiple comparisons) were also significantly higher
than the default. Figure 12 shows the big-tucked randomly
initialised morphology had higher swing knee input weights
than the default, with significantly greater values for swing
knee angle (Mann-Whitney U=48, n1=n2=20, p=5.68e-06
one-tailed, without correction for multiple comparisons) and
swing knee derivative (Mann-Whitney U=48, n1=n2=20,

p=5.68e-06 one-tailed, without correction for multiple
comparisons). This aligned with the randomly initialised
big tucked gait swinging its legs faster than the default.

4. Conclusions

We produced a functional re-implementation of
[18] directly into 3D without bootstrapping from 2D first;
featuring a deliberately simple linear control scheme in order
to provide a foundation for future bipedal work both from
ourselves and in the community. The re-implementation
achieves high fitness and stepping gaits. We introduced
two novel morphology styles based on a baby albatross
to the re-implementation; one with a square base and the
other with tucked knees. These morphologies were up to
three times fitter than the default, despite not technically
being able to fall. We then incrementally evolved these
morphologies, creating a second morphological genotype
and seeding both with previously high-performing agents.
Randomly initialising these morphology and controller
genotypes instead achieved fitness up to four times higher.
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Figure 12. We list the agents’ six controllers, upper body to swing ankle, on the left of the tables. (left to right) The default, square-base randomly
initialised and big-tucked randomly initialised morphologies’ mean input weights.

Finally, the big-tucked randomly initialised morphology
evolved an extremely fast gait with significantly higher
input weights for its upper body and swing knee controllers.

Future work will include incrementally evolving more
complex bipedal behaviours, such as jumping or multi-
directional running, from this simpler motion. We will also
execute the system with the lateral joints added; this might
help determine why the randomly initialised morphologies
outperformed the preloaded ones.

References

[1] Beyer, H-G., and Dirk V. Arnold. “Theory of evolution strategies—A
tutorial.” Theoretical aspects of evolutionary computing. Springer,
Berlin, Heidelberg, 2001. 109-133.

[2] Bramble, Dennis M., and Daniel E. Lieberman. “Endurance running
and the evolution of Homo.” nature 432.7015 (2004): 345-352.

[3] Calisti, Marcello, et al. “An octopus-bioinspired solution to movement
and manipulation for soft robots.” Bioinspiration & biomimetics 6.3
(2011): 036002.

[4] Chang, Eric, et al. “Soft biohybrid morphing wings with feathers
underactuated by wrist and finger motion.” Science Robotics 5.38
(2020).

[5] Collins, Steven H., Martijn Wisse, and Andy Ruina. “A three-
dimensional passive-dynamic walking robot with two legs and knees.”
The International Journal of Robotics Research 20.7 (2001): 607-615.

[6] Collins, Steve, et al. “Efficient bipedal robots based on passive-
dynamic walkers.” Science 307.5712 (2005): 1082-1085.

[7] Dyck, J. A. N. “The evolution of feathers.” Zoologica Scripta 14.2
(1985): 137-154.

[8] Fukuda, Toshio, Youichirou Komata, and Takemasa Arakawa. “Sta-
bilization control of biped locomotion robot based learning with GAs
having self-adaptive mutation and recurrent neural networks.” Proceed-
ings of International Conference on Robotics and Automation. Vol. 1.
IEEE, 1997.
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