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Abstract

Understanding the effect of population size on the key parameters of evolution is particularly important for populations
nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation
rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-
flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We
introduce an algorithmic method capable of determining the relationship between population size, the critical mutation
rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the
error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the
critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much
lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical
mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled
on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the
critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing
the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural
populations with their numbers in decline can be expected to lose genetic material in line with the exponential model,
accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and
population management strategy. The effect of population size is particularly strong in small populations with 100
individuals or less; the exponential model has significant potential in aiding population management to prevent local (and
global) extinction events.
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Introduction

Small populations frequently exist in nature. Some animal

species can exist in populations of only hundreds, while those

nearing extinction may be found in populations of only a few

individuals. The latter case is of particular concern. Understanding

the effect of population size on the critical parameters of evolution

(mutation, recombination, selection, and genetic drift) is essential

in making accurate predictions regarding the likely fate of a small

population if left to persist in its current environment. For

example, inbreeding resulting from genetic drift in small popula-

tions can depress population fitness and increase the risk of

extinction [1]. Environmental change is rapid, therefore popula-

tions need to evolve at a sufficient rate to prevent further

population decline and enable evolutionary rescue [2]. Population

decline can lead to loss of fit genetic material that may be difficult

to recover in very small populations due to mutational meltdown

[3].

Evolutionary systems are persistently under pressure to evolve

sequences that are both fit and robust [4–6], where robustness is

defined in terms of the average effect of a specified perturbation

(such as a mutation) on the fitness of a specified genotype [7]. The

greater the robustness, the smaller the change in fitness. The

majority of mutations have a negative effect on fitness [8]; greater

robustness to mutation can provide protection against loss of

fitness and so can protect against the effects of such deleterious

mutations. In addition, smaller populations are more susceptible to

loss of fitness through genetic drift [9,10].

The concept of a fitness landscape was introduced in [11] and

later combined with the notion of sequence space in [12]. Each

sequence in sequence space has a fitness value, which represents its

relative replication capacity [13]. The fittest sequences in the

landscape are the ‘peaks’, while the lower fitness sequences occupy

the ‘valleys’. Sequence space is explored through evolution by

mutation, recombination and selection (and so genetic drift) in

accordance with the fitness landscape. Mutation introduces

variation, while selection reduces it by removing low fitness

sequences. The balance between these two forces is referred to as

the mutation-selection balance [14,15]. When there is mutation-

selection balance, the population will tend to cluster around the

fitness peaks and form a quasispecies, where a quasispecies consists

of a distribution of genotypically closely related replicative units,

centred around the copy corresponding to the phenotype of

maximum selective value (the peak) [12,15,16].
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Mutation introduces change at the sequence level. The greater

the number of changes, the greater the chance of a beneficial

mutation occurring. However, as the likelihood of detrimental

mutations will also increase, changes occurring too frequently can

lead to an inability of natural selection to maintain the

population’s genetic makeup. In a landscape with a single fitness

peak, a population is able to maintain its position surrounding the

top of the peak so long as the mutation rate does not exceed a

particular rate known as the error threshold. Above this threshold,

there is an error catastrophe and the population delocalizes across

sequence space [13,15–20]. Note that this does not necessarily

equate to an extinction threshold [21]. An error catastrophe is an

evolutionary shift in genotype space, while extinction refers to the

reduction of individuals in the population. A population that shifts

to the lower fitness areas of the landscape is less well adapted to its

current environment.

The concept of the error threshold was introduced in [22] and

later in [23] based on the quasispecies equation:

_xxi~
Xm

j~1

xjfjqji{wxi ð1Þ

Here, xi is the frequency of genotype number i, where

i[f1, . . . ,ang, a is the alphabet size, n is the length of sequences,P
xi~1, fj is fitness (selection), w~

P
xifi is the average fitness,

and qji is a transition probability (mutation). The derivative in time

is denoted _xx, and there are m~an genetic sequences.

Selection and mutation provide two forces (or pressures) on the

population, and they can be combined into one matrix (wji~fjqji)

(see [16], p. 35). Selection draws the population closer to the

highest fitness, while mutation is usually assumed to have a

deleterious effect due to which the population drifts away from the

highest fitness. Generally, the population converges to a stable

(equilibrium) state that is defined by an eigenvector of the

mutation-selection matrix (wji). This eigenvector corresponds to

the largest eigenvalue of (wji), which is the average fitness w [16].

The error threshold is dependent on the existence of a mutation-

selection balance when the effect of mutation does not exceed that

of the selection pressure; it is the maximal mutation rate that

allows a population to stay clustered around the fitness peak. Note

that Equation 1 is a model for infinite populations. So, strictly

speaking, the error threshold does not exist when Nv?.

However, Equation 1 can be used as an approximation for finite

population dynamics [24]. The dynamics of finite populations

have been studied for a long time in single-peak landscapes

[25,26]. They have also been studied using the Moran process

[16,27]. The discrete-time formulation of the quasispecies

equation has been used to describe mutation-selection dynamics

[28–30].

An error catastrophe can delay or prevent extinction by shifting

the population to more robust genotypes [21]. In addition to the

error threshold, in landscapes where there is more than one peak,

there may also be one or more critical mutation rates at which the

population loses its ability to remain on fitter peaks, but retains its

ability to remain on flatter peaks of lower fitness [9,17,29,31].

Above such critical mutation rates, individuals with greater

robustness to mutation are able to survive while fitter, less robust

individuals may not. This represents a phase transition from

survival-of-the-fittest to survival-of-the-flattest

[6,9,15,20,29,31,32]. At lower mutation rates, selection favours

individuals that reside at peaks with higher fitness, due to the rarity

of mutations that push individuals off the peaks [5]. However, at

higher mutation rates there will be an increase in the frequency of

mutations which push individuals off the peaks; selection favours

individuals located in flatter regions of the fitness landscape as

individuals here are less likely to experience large reductions in

fitness compared with those that may be initially fitter but reside in

parts of the landscape with steeper peaks. Individuals that are part

of a neutral network [33–35], in that they are connected in

sequence space to other individuals with equivalent fitness, are said

to be more mutationally robust than individuals that are not

[15,36–38]. The critical mutation rate has been defined as the

midpoint between the highest mutation rate at which there is

survival-of-the-fittest, and the lowest mutation rate at which there

is survival-of-the-flattest [9,31].

Survival-of-the-flattest has been observed in digital organisms

[31,32], theoretically [32,37], in simulated RNA evolution [38],

and in RNA viruses [6]. Evolution of mutational robustness has

also been observed in simulated RNA evolution [39], in an

artificial evolution model with digital organisms [40], and in

laboratory protein evolution experiments [41]. Both [39] and [41]

place an emphasis on the degree of polymorphism in the

population, suggesting that highly polymorphic populations are

more likely to spread across many nodes of a neutral network (each

corresponding to a genotype), concentrating at highly connected

parts; individuals at highly connected nodes have greater

robustness to mutation, which they pass on to the next generation.

Flat landscapes have been referred to as redundant, and steeper

landscapes as antiredundant. It has been suggested that both in

theory and in individual-based stochastic simulations, redundancy

increases the mean fitness in small populations as it masks

mutations that arise due to mutational drift [42]. However, large

populations are less affected by drift, and so are more able to

occupy high-fitness peaks in sharp landscapes.

Both [38] and [9] found ‘‘that population size played only a

minor role in determining the position of the critical mutation

rate’’ [29], within the context of their experiments. Population

sizes as low as 250 were used, and the conclusion made ‘‘that the

critical mutation rate was independent of population size’’ despite

the fact that there did appear to be some correlation for certain

cases [9]. They did not consider smaller populations, such as those

that may exist for species nearing extinction or living in localized

groups. Both [23] and [43] considered the effect of random genetic

drift in finite populations (in haploids and diploids respectively),

and observed that there is a shift of error thresholds to lower values

which is more pronounced the smaller the population. Error

thresholds were also shown to increase for increasing population

size using a genetic algorithm with both single-peak and correlated

landscapes [44]. Based on these results for error thresholds, we

consider the need for further investigation of the critical mutation

rate at smaller population sizes than those previously studied, and

pose first the following hypothesis:

Hypothesis 1
Critical mutation rate has a dependence on population size in

haploid populations.

It should be noted that the parts of this paper associated solely

with hypothesis 1 were presented at the European Conference on

Artificial Life (ECAL 2011) [45]. All mammals have two copies of

their genome; they are diploid as opposed to haploid [46]. In

diploid organisms, one copy of the genome is inherited from the

mother, while the other is inherited from the father. Each

individual will therefore have two copies of each gene, each of

which may be of a different form (a different allele). Different

alleles have different degrees of dominance; an individual with two

different alleles will display the phenotype of the dominant allele.

Critical Mutation Rate Depends on Population Size
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In the majority of cases, mutant alleles are recessive while the non-

mutant wild-type alleles are dominant [47].

The error threshold has been studied in a single-peak fitness

landscape with a diploid population [48]. The quasispecies model

was used, in which a molecule is represented as a string of v digits,

each of which is allowed to be one of k different values

representing the different types of monomer used to make the

molecule. The kv different strings can be considered as different

alleles of a gene that determines the fitness of a haploid individual;

this closely follows the classical one-locus, multiple-allele model of

population genetics [10]. A diploid analogue of the single-peak

fitness landscape was used, in accordance with the quasispecies

model which was generalized by [43] to consider diploid

individuals. There is a dominance parameter {?vhv?, where

the master allele is completely dominant for h~1 and completely

recessive for h~0. If h~ 1
2
, there is no dominance. In addition to

this, hw1 models the case where there is heterozygote advantage,

while hv0 models heterozygote disadvantage. It was observed

that, for hƒhc&1:75, there are two distinct regimes: the

quasispecies regime in which there is a single master allele around

which most of the population is situated in sequence space, and the

uniform regime where the 2v alleles appear in the same

proportion. They define the error threshold as being the error

rate at which the transition between these two regimes occurs, with

hc representing a critical value beyond which the two regimes can

no longer be distinguished. Beyond the error threshold the system

undergoes an error catastrophe, something which was found to be

postponed or even avoided in the case of a dominant allele

(hw0:5). Based on the presence of an error threshold for a diploid

population as described by [48], it is expected that the relationship

between population size and critical mutation rate observed for a

haploid population should be conserved to some degree when

moving from haploidy to diploidy:

Hypothesis 2
Critical mutation rate has a dependence on population size in

diploid populations.

As diploid individuals have two copies of each sequence, this

may confer a greater degree of robustness as any deleterious

mutation will be potentially cancelled out; the second sequence has

the potential to provide a back-up copy. This increased robustness

may allow diploids to withstand higher mutation rates, and

therefore have higher critical mutation rates and error thresholds

than haploids.

We present five contributions. First, an algorithmic method,

operating at the level of the individual, which does not rely on the

precise details of the underlying fitness landscape and is therefore

capable of providing widely applicable results. Second, verification

of the method against analytical models for the error threshold,

providing confidence in our subsequent results. Third, the

discovery of an exponential relationship between the critical

mutation rate and population size in haploid populations

(Hypothesis 1). Fourth, the result that this is conserved when

moving from haploidy to diploidy (Hypothesis 2) but that the

critical mutation rate and error threshold are both unexpectedly

lower in the latter case. Fifth, an analysis of the transition from

critical mutation rate to error threshold (survival-of-the-fittest to

survival-of-the-flattest) which provides for an improvement on

previous definitions of the critical mutation rate. These contribu-

tions provide the key insight that the critical mutation rate, at

which individuals with greater robustness to mutation are favoured

over individuals with greater fitness, has an exponential depen-

dence on population size in both haploid and diploid populations,

the latter in a system modelled on the biological process of meiosis.

This is in contrast to previous studies which identified that critical

mutation rate was independent of population size. Our results

show the effect of population size to be particularly strong in small

populations with 100 individuals or less.

Methods

Haploid Method
An individual sequence consists of a string of characters drawn

from an alphabet of size 4 (which can be thought of as, for

example, A/C/G/T or 0/1/2/3) with a fixed length of 30. In

each step of the algorithm, three individual sequences are selected

at random from the population. Two of the three selected

individuals are chosen as parents in a crossover which replaces the

third individual with the resulting child. The child is then subject

to one round of point mutation (to a different base) at a given per-

base mutation rate. The individual to be replaced is determined

each time based on the fitnesses of the three selected individuals:

there is an equally small chance of either of the two fittest of the

three being replaced (25%), and a larger chance of replacing the

least fit (50%) The 25:25:50 ratio ensures that any individual can

be chosen, so allowing a population to lose its fittest peak. This use

of tournament selection ensures that selection is independent of

the precise shape of the landscape. This process continues until

each individual in the population has been chosen exactly once (or

there are less than three remaining to select); this represents one

generation. The fitness of each individual sequence is evaluated

based on a two-peak fitness landscape with one narrow peak of

high fitness (peak 0), and a broader, flatter peak with lower fitness

(peak 1) (Figure 1). Peak 0 has a maximum fitness score of 15 and a

radius of 2, where radius refers to the Hamming distance from top-

of-peak to zero fitness score. Peak 1 has a maximum fitness score

of 10 and a radius of 5, with its top chosen as an arbitrary point

(fixed throughout evolution) with a Hamming distance of 10 from

the top of peak 0. This is done by setting the sequence at the top of

peak 0 to be a string of 0 s, while the sequence at the top of peak 1

is set as a string of 0 s with 10 of those 0 s randomly changed to

either a 1,2 or 3. Individuals are allowed to move on the slopes, or

in between the peaks. This is a simple landscape in which survival-

of-the-flattest can occur, with generality due to the use of

tournament selection. The effect of mutation on fitness is smaller

within peak 1 than within peak 0; individuals located on peak 1

will have higher mutational robustness compared with those

located on peak 0.

Following the experimental procedure designed by [31] (and

used by [9]) we initialized half of the population to peak 0 and half

to peak 1 to avoid any initial bias towards either peak. The

Figure 1. Two-peak fitness landscape. There is one narrow peak of
high fitness (peak 0), and one broader, flatter peak of lower fitness
(peak 1).
doi:10.1371/journal.pone.0083438.g001
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simulation was run for 10,000 generations, and the first generation

at which there were no individuals on peak 0 was recorded. If peak

loss did not occur within the 10,000 generations, a value of 21 was

recorded in place of the generation number. Similarly, the number

of generations it took to lose peak 1 was also recorded. A range of

per-base mutation rates was tested for a range of population sizes,

with the simulation being repeated and run 2000 times for each

combination. It should be noted that the population size is fixed

for the duration of each run. The mutation rate by which 95% of

the runs had lost each peak was recorded as the critical mutation

rate, where a peak was considered to have not ever been lost only

if there were individuals remaining on it at the end of the 10,000

generations.

The Moran Process
Evolution in finite populations can be described using the

Moran process [16]. The Moran process is a simple birth-death

process in which each time step involves choosing at random one

individual for reproduction and one individual for death. Death

occurs by replacing the latter individual with the child of the

former individual. There are no restrictions to ensure each

individual is chosen any number of times. Nowak and Schuster use

a system based on the Moran process [23], in which they group

individuals into error classes (where individuals are in the same

error class if they are the same Hamming distance away from the

master or target sequence). They take into account the number of

individuals in each error class to calculate the transition

probabilities of the birth and death process. The haploid method

described above is a variation on this; population mixing is done

through crossover of two reproducing sequences to replace a third

sequence marked for death, with every individual being chosen

once and only once to provide a defined generation. Use of

crossover to introduce mixing is a more biologically realistic

process. In addition, while Nowak and Schuster’s method

considers frequency at the level of the population, the haploid

method described above operates at the level of the individual

sequence.

Diploid Method
The genetic algorithm for a diploid population was modelled on

the biological process of meiosis. Meiosis is a type of cell division

which produces haploid cells. DNA is made up of two

complimentary sequences (double-stranded), and condenses dur-

ing cell division to form structures known as chromosomes [49].

Diploid organisms have two copies of each chromosome. For

example, humans have 46 chromosomes in 23 pairs. One of each

pair comes from the father, the other from the mother. The pairs

are known as homologues. Each chromosome is replicated (during

which process there is a chance of mutation), and subsequently

becomes a complex made up of two identical sister chromatids

which form an X-shaped structure (bivalent). Homologous

chromosomes join together to form a tetrad. This means, for

example, that the maternal copy of chromosome 1 will pair up

with the paternal copy of chromosome 1. It is called a tetrad as it is

made up of four chromatids (the original maternal and paternal

chromosomes and their duplicates). Crossover occurs within the

tetrads. The pairs are pulled apart to opposite ends of the cell.

Each end of the cell will subsequently have one copy of the

chromosome. The cell splits to create two cells, each with the

correct number of chromosomes (one copy of each). Each cell will

contain a mix of paternal and maternal DNA due to crossover. In

each of the two cells, the chromosomes are split into their

constituent chromatids. The chromatids are pulled to opposite

ends, and the cells divide. The result is four cells, each containing

one chromatid (now referred to as a chromosome). The resulting

four cells are haploid as they contain only one copy of each

chromosome, and are known as gametes. The joining of a gamete

from a mother with that from a father will produce a diploid child.

In the genetic algorithm, each genetic sequence is represented

as a string of 30 characters. DNA is double-stranded, but as one

strand is just a compliment of the other, it can be represented as a

single-strand string in the simulation. Consistent with the haploid

system, each character in the sequence is one of four possibilities.

A diploid individual consists of two sequences, one inherited

paternally and one inherited maternally. There are no distinct

sexes in the simulation; the terms maternal and paternal are used

merely to differentiate between the two parent individuals. At the

start of the algorithm, each individual is initialized so that both of

its constituent sequences are identical (homozygous). In each step

of the algorithm, three individuals are selected from the population

at random. Two of the selected individuals are chosen to be

parents, while the third will be replaced by their child after

reproduction. Selection is carried out based on the fitness of the

three individuals. There is an equally small chance of either of the

two fittest individuals being chosen to be replaced (25%) and a

higher chance of the individual with the lowest fitness being

replaced (50%). After selection, crossover occurs within each

parent individual between the maternal and paternal sequences. A

locus is randomly selected to be the crossover point. The maternal

sequence is copied up to this locus, and the paternal sequence

after. This produces a single-sequence gamete from each parent,

the bases of which are then mutated (each to a different base)

according to a per-base mutation rate. One of the gametes is

randomly designated the paternal sequence for the child, while the

other becomes the maternal. The resulting diploid child becomes

part of the population. This process continues until each individual

in the population has been chosen exactly once (or there are less

than three remaining to select); this represents one generation and

ensures that there is no chance of any individual avoiding being

chosen and so remaining static in the landscape. The fitness of

each individual sequence is evaluated based on the two-peak

fitness landscape (Figure 1) and the experimental procedure is that

used in the haploid system.

Fitness Calculation
The key difference between the haploid experiment described

above (and in [45]) and the diploid experiment is the introduction

of diploidy. In the haploid case, the fitness of each individual is

calculated based on the Hamming distance of an individual

sequence from the top of each peak. The fitness of the individual in

terms of peak 0 is equal to max (0,f0|(1{d0=r0)), where f0 is the

fitness score of the target at the top of peak 0, d0 is the Hamming

distance of the individual from this target, and r0 is the Hamming

distance between the target and the point at which the peak has a

fitness score of 0 (see Figure 1). The fitness of the individual is also

calculated in terms of peak 1. The higher of the two fitness values

is designated to be the overall individual fitness score. However, a

diploid individual consists of two sequences and has a fitness score

for each. To obtain an overall individual fitness score, f , we

introduce a dominance parameter which we denote l:

f ~(l|fmax)z((1{l)|fmin) ð2Þ

The fitness score for each of the constituent sequences is

compared. The sequence with the higher of the two fitnesses has

its fitness score designated fmax, while fmin is the fitness score for

the sequence with the lower fitness. If both sequences have the

Critical Mutation Rate Depends on Population Size

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e83438



same fitness, fmax and fmin will have equal value. When l is set

equal to 1, the overall individual fitness is equal to the maximum

of the two fitness scores. When l is set equal to 0, the overall

individual fitness will be equal to the minimum of the two fitness

scores. The experiment was run with l set at a range of values,

0ƒlƒ1.

Results

Observed Error Thresholds are Consistent with Analytical
Models

We developed an algorithmic method that simulates evolution

of a haploid population on a two-peak landscape (see the Methods

section below and Figure 1). Using this, we measure both the

critical mutation rate and the error threshold for a range of

population sizes. Nowak and Schuster [23] use a system based on

the Moran process and present an analytical expression for the

population size dependence of the error threshold (Equation 3),

where qmin is the error threshold, v is sequence length, s is the

selection strength or superiority parameter of the master (fittest)

sequence, a~
ffiffiffiffiffiffiffiffiffiffi
s{1
p

, and N is population size:

½qmin(N)�v~ 1

s
1z

2a2

N
1z

ffiffiffiffiffi
N
p

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

a2

N

r !" #
ð3Þ

Ochoa et al. [50,51] derived a reformulation of the Nowak and

Schuster analytical expression (Equation 4), in which they make

explicit the reduction in the error threshold when moving from

infinite populations to those of size N (see [50] section 3 for the

detailed derivation). Here pN is the error rate:

pN~
ln (s)

v
{

2
ffiffiffiffiffiffiffiffiffiffi
s{1
p

v
ffiffiffiffiffi
N
p z

2 ln (s)
ffiffiffiffiffiffiffiffiffiffi
s{1
p

v2
ffiffiffiffiffi
N
p ð4Þ

Figure 2 shows the error thresholds from our algorithmic

method alongside those from Equations 2 and 3 using a s value of

2.1. It should be noted that s is the superiority parameter which

would normally be calculated as the ratio of the two fitness peaks.

However, as fitness in our algorithmic method is represented as a

score as opposed to being a direct measure of reproductive rate,

and selection is determined only by fitness score rank, independent

of the magnitude of fitness score difference (such that any strictly

monotonic transformation of fitness score would produce the same

results), we show here the curves with the s value that best fits the

complete range of our results. It has been confirmed that changing

the original algorithmic method to include peak heights with a

ratio of 2.1 produces a comparable match. The observed

consistency with the analytical models provides verification for

our algorithmic method, and therefore confidence in our

subsequent results.

Critical Mutation Rate has an Exponential Dependence
on Population Size in Haploid Populations

Using a population of haploid individuals and a genetic

algorithm with a simple two-peak fitness landscape (Figure 1),

we find that the mutation rates at which the high, narrow peak and

the lower, flatter peak are lost (the survival-of-the-fittest and

survival-of-the-flattest regimes ending at the critical mutation rate

and error threshold respectively) for increasing population sizes

can be approximated by an exponential function (Figure 3).

As opposed to there being instantaneous transitions from

survival-of-the-fittest to survival-of-the-flattest and to the error

catastrophe at discrete mutation rates, there are gradual transitions

in which there are shifts from the first to the second, and from the

second to the third (Figure 4). The mutation rate at which 95% of

the runs have lost the high, narrow peak (peak 0) within 10,000

generations marks a point at which the transition from survival-of-

the-fittest to survival-of-the-flattest is essentially complete. This can

be considered as a critical mutation rate. For a haploid population

of 100 individuals of length 30, this is at a per-base mutation rate

of approximately 1.08%. Figure 4(a) shows the number of

generations taken to lose each peak at this mutation rate, for

each of the 2,000 runs. Just 52% of these runs lost peak 1 within

the duration of the simulation (compared to 95% for peak 0). Loss

of peak 0 is then followed by one of two events: either peak 1 is lost

relatively quickly (within 200 generations) or it is maintained for

the duration of the simulation. The fate of the population after loss

of peak 0 is therefore dependent on whether or not it is able to

quickly converge on peak 1. Figure 4(a) shows (at this mutation

rate) that when peak 0 is not lost early, the number of generations

taken to lose peak 0 is distributed approximately evenly up to

10,000 generations.

The mutation rate corresponding to 95% of the runs having lost

the lower, flatter peak (peak 1) within 10,000 generations marks a

point at which the transition from survival-of-the-flattest to the

error catastrophe is essentially complete. This can be considered as

another critical mutation rate (or the error threshold). For a

haploid population of 100 individuals of length 30, this is at a per-

base mutation rate of approximately 1.85%. Figure 4(b) shows the

number of generations taken to lose each peak at this mutation

rate, for each of the 2,000 runs. It is an apparent reversal of

Figure 4(a) but with 100% of the runs having lost peak 0 within

200 generations. The population has almost entirely lost the ability

to localize to either peak.

The Relationship between Critical Mutation Rate and
Population Size is Conserved when Moving from
Haploidy to Diploidy

Based on the observation that the error threshold has a

dependence on haploid population size, and the observation by

[43] that this relationship is not lost in diploid systems, a

hypothesis was formed that the relationship will also hold for the

critical mutation rate in haploid and diploid systems with a two-

peak landscape. In a diploid system modelled on the process of

meiosis in biology, each individual has two copies of the genetic

sequence and recombination occurs within as opposed to between

individuals. The resulting single-sequenced gamete then joins with

another to form a child. The haploid and diploid methods of

reproduction are fundamentally different; single-sequence versus

two-sequence individuals, and between-individual recombination

versus within-individual recombination means two populations

reproducing using the two different systems will differ in their

occupation of sequence space. The two copies of each sequence

present in diploid individuals also gives them a redundancy not

found in haploids. It was therefore expected that there would be

some variation in the results when the experiments with a haploid

system were reproduced using a diploid system. Consistent with

this, the results using the haploid system also apply to a diploid

population, but the diploid critical mutation rate and error

threshold curves are lower than those for a haploid population

(Figures 3, 5 and 6).

Transition between the states shown in Figure 4 is maintained

when moving from haploidy to diploidy. Visualizing the relation-

ship between population size, mutation rate and percentage of
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Figure 2. Verification of the method against analytical models for the error theshold. Nowak and Schuster [23] present an analytical
expression for the population size dependence of the error threshold (Equation 3). Ochoa et al. [50,51] include a reformulation of the Nowak and
Schuster analytical expression (Equation 4), in which they make explicit the reduction in the critical mutation rate when moving from infinite
populations to those of size N (see [50] section 3 for the detailed derivation). The observed consistency between our results and the analytical
models provides verification for our results and the algorithmic method as a whole. It should be noted that the x axis represents the mutation rate by
which 95% of runs have lost the lower, flatter peak (peak 1).
doi:10.1371/journal.pone.0083438.g002

Figure 3. The results of the simulation can be approximated by an exponential function. This applies to both peak 0 (high, narrow peak)
and peak 1 (lower, flatter peak). y~A{B| exp {((N=C)D) (with N being population size). The parameters (and their standard error in brackets)
obtained by curve-fitting using a least squares method were, for the high, narrow peak (peak 0): A = 1.221% (0.0033%), B = 7.001% (1.4390%),
C = 1.440 (0.1701), D = 0.3250 (0.02739), and for the lower, flatter peak (peak 1): A = 2.184% (0.0122%), B = 5.438% (1.0466%), C = 7.721 (0.2734),
D = 0.3978 (0.0476).
doi:10.1371/journal.pone.0083438.g003
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runs losing each peak shows the continuous transition from

survival-of-the-fittest to survival-of-the-flattest (around the critical

mutation rate) and subsequently to the error catastrophe (around

the error threshold), and emphasizes the relationship between

these transitions (Figure 6). For example, for population sizes of

several hundred individuals, the lower dashed line across the lower

projections in Figure 6 indicates approximately where the

percentage loss of peak 0 begins to rise steeply and that of peak

1 begins to fall steeply as mutation rate is increased: the transition

from survival-of-the-fittest to survival-of-the-flattest; and the upper

dashed line indicates approximately where the percentage loss of

peak 0 has reached 100% and that of peak 1 has reached its

Figure 4. Transition from survival-of-the-fittest to survival-of-the-flattest and subsequently to the error catastrophe. Each point
represents the number of generations it took to lose the high, narrow peak (peak 0) and the number to lose the lower, flatter peak (peak 1), in a
single run of the GA for population size 100, sequence length 30. Where a peak was not lost within 10,000 generations, a value of 21 was assigned
for that particular run of the genetic algorithm: all points on the negative side of either axis should be taken to have a value greater than 10,000.
doi:10.1371/journal.pone.0083438.g004
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minimum before rising back upward as mutation rate is increased

further: the transition from survival-of-the-flattest to the error

catastrophe. In the upper projection (b) of Figure 6 it can be seen

that for smaller population sizes (less than 50) the percentage of

runs losing peak 1 does not fall below approximately 70%. This

suggests 70% loss of peak 1 as a lower bound when considering

error threshold. Below 50% loss of peak 0, individuals have

transferred from peak 1 to peak 0, so 50% is a lower bound for

considering critical mutation rate. The shapes of the population

size to mutation rate mappings become increasingly consistent as

we move above these lower bounds and 95% peak loss is a good

choice for both critical mutation rate and error threshold.

Discussion

In a fitness landscape, the fittest sequences are the ‘peaks’, while

the lower fitness sequences occupy the ‘valleys’. Sequence space is

explored through evolution by mutation, recombination, selection

and genetic drift in accordance to the fitness landscape. Mutation

introduces variation, while selection acts to increase the frequency

of fitter sequences. The first contribution of this study is the

development of an algorithmic method that operates at the level of

the individual, in which selection is independent of the precise

shape of the underlying landscape. The second contribution is the

verification of this method using equations from analytical models

(Equations 3 and 4) to produce comparable curves (Figure 2).

Nowak and Schuster [23] present an analytical expression for the

population size dependence of the error threshold using a system

based on the Moran process (Equation 3). In Nowak and

Schuster’s system there is no crossover; population mixing is

instead achieved by calculating transition probabilities based on

the number of individuals that are a certain Hamming distance

away from the master sequence (see section ‘The Moran Process’).

This is comparable to our algorithmic method which introduces

mixing through the biologically realistic process of crossover.

Ochoa et al. [50,51] include a reformulation of the Nowak and

Schuster analytical expression (Equation 4), in which they make

explicit the reduction in the error threshold when moving from

infinite populations to those of size N (see [50] section 3 for the

detailed derivation). The observed consistency with the analytical

error threshold models provides verification for our critical

mutation rate results and our algorithmic method as a whole.

The third contribution of this work is to show that, for a haploid

population and a two-peak landscape, the mutation rates at which

the high, narrow peak and the lower, flatter peak are lost for

increasing population sizes (of individuals of length 30) can be

approximated by an exponential function. The null hypothesis 1

(that critical mutation rate has no dependence on population size

in haploid populations) can therefore be rejected. The effect of

population size is particularly noticeable in populations of 100

individuals or less. We also observe that the curve obtained for the

critical mutation rate flattens out to a greater degree than the

curve obtained for the error threshold. This can be seen by looking

at the faint lines in Figure 3. It is also noticeable by the difference

in the value of the C parameter defined in Figure 3’s caption,

where C~1:4+0:2 for the critical mutation rate and

Figure 5. The relationship between population size and critical mutation rate is consistent across haploids and diploids. Here l is the
dominance parameter, as described in the section entitled Fitness Calculation. The simulation was run using the l values listed. The points show the
results obtained, which can be approximated by exponential functions as shown by the lines (obtained by curve-fitting using a least squares
method). The left graph shows the curve obtained for the critical mutation rate and the right graph shows the error threshold, both for a diploid
population. Refer to Figure 3 for the equivalent curves for a haploid population.
doi:10.1371/journal.pone.0083438.g005
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C~7:7+0:3 for the error threshold; the lower the value of C, the

flatter the curve. This explains why previous studies of larger

populations have concluded that there is no relationship between

the critical mutation rate and population size (e.g., [9]).

Using a genetic algorithm based on the biological process of

meiosis, our fourth contribution is to demonstrate that the

exponential relationship is conserved when moving from haploidy

to diploidy, but that the critical mutation rate curves observed for

a diploid system are lower than those observed for a haploid

system (Figure 5). The null hypothesis 2 (that critical mutation rate

has no dependence on population size in diploid populations) can

therefore be rejected. It has been suggested that there is an

interaction between mutation rates and mating strategies in nature

[52]. Haploid systems use between-individual recombination while

diploid systems use within-individual recombination. Recombina-

tion lowers the mutation rate at which the error threshold occurs

[53]. Assortative, non-random mating, in which individuals of a

similar phenotype mate more often than expected by chance, is

Figure 6. Percentage of runs losing the peaks at different mutation rates and population sizes. The results shown are for the diploid
method with l~1, for peak 0 (a, left) and peak 1 (b, right). In the two lower projections the axis coming out of the page is the percentage of runs. The
lower dashed line across these projections indicates, for population sizes of several hundred individuals, approximately where the percentage loss of
peak 0 begins to rise steeply and that of peak 1 begins to fall steeply as mutation rate is increased: the transition from survival-of-the-fittest to
survival-of-the-flattest. Likewise, the upper dashed line indicates approximately where the percentage loss of peak 0 has reached 100% and that of
peak 1 has reached its minimum before rising back upward as mutation rate is increased further: the transition from survival-of-the-flattest to the
error catastrophe.
doi:10.1371/journal.pone.0083438.g006
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able to overcome this shift toward lower error threshold

magnitudes induced by recombination [52]. Conversely, dissorta-

tive mating, in which dissimilar individuals mate more often,

reduces the magnitude of the error threshold. In the haploid

system, the simulation starts with the population clustered at the

two peaks. As the simulation is run, the population tends towards

one of the peaks assuming the mutation rate does not exceed the

error threshold. Recombination therefore tends to occur between

sequences with similar fitnesses, and mating can be considered to

be assortative. In our diploid system, the simulation starts with the

population clustered at the two peaks, with individuals either

completely at either peak, or with one sequence at one peak and

one at the other. As fitness is calculated as a single value based on

the fitness of an individual’s two constituent sequences (see section

entitled Fitness Calculation), an individual can have, for example,

a high fitness value but consist of two sequences in completely

different parts of the fitness landscape. There is therefore a chance

that the individuals selected to mate could have very different

genetic make-ups; the degree of dissortative mating exceeds that of

the haploid system. We suggest the difference in mating systems

used by haploids and diploids as a potential reason for the

difference in the curves shown in Figure 5; further work will be

required to confirm this.

The fifth contribution of this work is the development and

improvement of the definition of the critical mutation rate

following analysis of our results. Previous studies have defined

the critical mutation rate to be the midpoint between the highest

mutation rate at which there is survival-of-the-fittest, and the

lowest mutation rate at which there is survival-of-the-flattest

[9,31]. However, the results of our study clearly show that there is

a transition from survival-of-the-fittest to survival-of-the-flattest

and subsequently to the error catastrophe (Figure 4). Figure 4(a)

shows that 95% of the runs had lost peak 0 within the duration of

the simulation when the per-base mutation rate was 1.08%; just

52% of these runs lost the lower, flatter peak (peak 1). At this point,

the transition from survival-of-the-fittest to survival-of-the-flattest

is essentially complete. This can be considered as a critical

mutation rate. Figure 4(b) shows that 95% of the runs had lost

peak 1 within the duration of the simulation when the per-base

mutation rate was 1.85%; 100% of these runs lost peak 0. This

demonstrates that the transition from survival-of-the-flattest to the

error catastrophe is essentially complete, with the population

having almost entirely lost the ability to localize to either peak at

this mutation rate. Figure 6 shows these transitions occurring in a

diploid population, and demonstrates a relationship between the

critical mutation rate and the error threshold. The highest point at

lower mutation rates in (b) appears to correspond to where the

curve in (a) starts to ascend. Likewise, by the time the curve in (b)

has descended to its lowest, the curve in (a) has reached its highest.

This shows the transition of the population favouring peak 0 to

favouring peak 1. The transition occurs around the critical

mutation rate. At less than 50% loss of peak 0, individuals are still

moving from peak 1 to peak 0. The critical mutation rate concerns

the loss of individuals from peak 0 to peak 1, therefore the critical

mutation rate should not be considered to be at a point where

there is still a significant transition in the other direction (implying

there is still a peak 0 advantage). In the top graph in Figure 6 (b), it

can be seen that for smaller population sizes (less than 50), the

curve does not fall below approximately 70% loss of peak 1.

Considering the equivalent portion of the graph, Figure 6 (a)

suggests that considering a peak loss of anything much less than

50% will be redundant when the population is small. The critical

mutation rate should be considered not as a single value at the

midpoint, but rather as lying within a range of values with a lower limit of

50% loss of the high, narrow peak.

These contributions provide the key insight that the critical

mutation rate, at which individuals with greater robustness to

mutation are favoured over individuals with greater fitness, has an

exponential dependence on population size in both haploid and

diploid populations, the latter in a system modelled on the

biological process of meiosis. This is in contrast to previous studies

which identified that critical mutation rate was independent of

population size. Our results show the effect of population size to be

particularly strong in small populations with 100 individuals or

less. When a population’s size drops to this level, its critical

mutation rate can be exceeded (in the absence of rapid mutation

rate control) leading to loss of genetic material and a feedback

spiral into further population size decline, genetic loss and on

toward extinction. Population decline can lead to loss of fit genetic

material that may be difficult to recover in very small populations.

We have not identified a threshold for extinction, but have

highlighted the fact that smaller populations experience error

catastrophes, during which a population shifts in genotype space to

areas of the landscape with lower fitness, at lower mutation rates.

Such shifts indicate a population has become less well adapted to

the current environment; smaller populations are at greater risk of

extinction due to the presence of fewer individuals in the first

place, with a smaller gene pool. Future work may determine the

effect this has on population extinction and recovery, using

parameter values within ranges found in nature. Testing the

efficacy of different population management and conservation

strategies (such as combining or mixing multiple small populations)

on populations of varying sizes could also highlight the importance

of considering population size and its relationship to genetic loss,

as demonstrated here, during the decision making process.
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9. Comas I, Moya A, González-Candelas F (2005) Validating viral quasispecies

with digital organisms: a re-examination of the critical mutation rate. BMC Evol

Biol 5: 5.

10. Hartl DL, Clark AG (2007) Principles of population genetics. Sunderland, MA:

Sinauer Associates, Inc., 4th edition.

11. Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection

in evolution. In: Proceedings of the Sixth International Congress on Genetics.

355–366.

12. Eigen M, Schuster P (1979) The hypercycle. New York: Springer.

Critical Mutation Rate Depends on Population Size

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83438



13. Domingo E, Wain-Hobson S (2009) The 30th anniversary of quasispecies.

EMBO Rep 10: 444–448.
14. Kimura M, Maruyama T (1966) The mutational load with epistatic gene

interactions in fitness. Genetics 54: 1337–1351.

15. Bull JJ, Meyers LA, Lachmann M (2005) Quasispecies made simple. PLoS
Comput Biol 1: e61.

16. Nowak MA (2006) Evolutionary dynamics: Exploring the equations of life.
Harvard University Press.

17. Tannenbaum E, Shakhnovich EI (2004) Solution of the quasispecies model for

an arbitrary gene network. Phys Rev E 70: 021903.
18. Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with

lethal mutants. BMC Evol Biol 7: 15.
19. Schuster P (2009) Genotypes and phenotypes in the evolution of molecules.

European Rev 17: 281–319.
20. Tejero H, Marin A, Montero F (2011) The relationship between error

catastrophe, survival of the attest, and natural selection. BMC Evol Biol 11: 2.

21. Bull JJ, Sanjuán R, Wilke C (2007) Theory of lethal mutagenesis for viruses.
J Virol 81: 2930–2939.

22. Eigen M, McCaskill J, Schuster P (1988) Molecular quasispecies. J Phys Chem-
US 92: 6881–6891.

23. Nowak MA, Schuster P (1989) Error thresholds of replication in finite

populations: Mutation frequencies and the onset of Muller’s ratchet. J Theor
Biol 137: 375–395.
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