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Abstract A common view in evolutionary biology is that mutation rates are min-
imised. However, studies in combinatorial optimisation and search have shown a clear
advantage of using variable mutation rates as a control parameter to optimise the per-
formance of evolutionary algorithms. Much biological theory in this area is based on
Ronald Fisher’s work, who used Euclidean geometry to study the relation between
mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here
we reconsider this theory based on the alternative geometry of discrete andfinite spaces
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of DNA sequences. First, we consider the geometric case of fitness being isomorphic
to distance from an optimum, and show how problems of optimal mutation rate con-
trol can be solved exactly or approximately depending on additional constraints of
the problem. Then we consider the general case of fitness communicating only partial
information about the distance. We define weak monotonicity of fitness landscapes
and prove that this property holds in all landscapes that are continuous and open at the
optimum. This theoretical result motivates our hypothesis that optimal mutation rate
functions in such landscapes will increase when fitness decreases in some neighbour-
hood of an optimum, resembling the control functions derived in the geometric case.
We test this hypothesis experimentally by analysing approximately optimal mutation
rate control functions in 115 complete landscapes of binding scores between DNA
sequences and transcription factors. Our findings support the hypothesis and find that
the increase of mutation rate is more rapid in landscapes that are less monotonic (more
rugged). We discuss the relevance of these findings to living organisms.

Keywords Adaptation · Fitness landscape · Mutation rate · Population genetics

Mathematics Subject Classification 05B25 · 26A48 · 68W20 · 68T05 · 92B20 ·
93E35 · 93B27

1 Introduction

Mutation is one of the most important biological processes that influence evolution-
ary dynamics. During replication mutation leads to a loss of information between
the offspring and its parent, but it also allows the offspring to acquire new features.
These features are likely to be deleterious, but have the potential to be beneficial for
adaptation. Thus, mutation can be seen as a process of innovation, which is partic-
ularly important as the number of all living organisms is tiny relative to the number
of all possible organisms. A question that naturally arises with regards to mutation
is whether there is an optimal balance between the amount of information lost and
potential fitness gained.

The seminal mathematical work to investigate biological mutation is by Fisher
(1930), who considered mutation as a randommotion in Euclidean space, the points of
which are vectors representing collections of phenotypic traits of organisms. Using the
geometry of Euclidean space, Fisher showed that probability of adaptation decreases
exponentially as a function of mutation size (defined using the ratio of mutation radius
and distance to the optimum), and concluded, therefore, that adaptation is more likely
to occur by small mutations. Several studies, however, suggested that large mutations
can be quite frequent in nature, thereby prompting re-examination of the theory (Orr
2005). Thus, Kimura (1980) extended the theory to take into account differences in
probabilities of fixation for mutations of small and large size. Subsequently Orr (1998)
considered the effect ofmutation across several replications. Interestingly,while Fisher
had a critical role in developing mathematical theory around discrete alleles, in his
geometric model he used Euclidean space of traits as the domain of mutation, which is
uncountably infinite and unbounded. This important issue only became apparent after
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Monotonicity of fitness landscapes…

the realisation that biological evolution occurs in a countable or even finite space of
discrete molecular sequences (Smith 1970). However, subsequent geometric models
based on Fisher’s, while explicitly modelling discrete mutational steps (e.g. Orr 2002),
continue to assume that they occur within the same infinite Euclidean space. This issue
may contribute to the fact that the predictions of such models have at best only been
partially verified in actual biological systems (McDonald et al. 2011; Bataillon et al.
2011; Kassen and Bataillon 2006; Rokyta et al. 2008). In this and previous work,
we consider mutation using the geometry and combinatorics of Hamming spaces
(Belavkin et al. 2011; Belavkin 2011), which are finite, and this leads to a radically
different view about the role of large mutations.

Independent of such biological concerns, researchers in evolutionary computation
and operations research have a long history of considering variable mutation rates in
genetic algorithms (GAs) (e.g. see Eiben et al. 1999; Ochoa 2002; Falco et al. 2002;
Cervantes and Stephens 2006; Vafaee et al. 2010, for reviews). In particular, Ackley
(1987) suggested that mutation probability is analogous to temperature in simulated
annealing, which decreases with time through optimisation. A gradual reduction of
mutation rate was also proposed by Fogarty (1989). Markov chain analysis of GAs
was used by Yanagiya (1993) to show that a sequence of optimal mutation rates
maximising the probability of obtaining the global solution exists in any problem. In
particular, Bäck (1993) studied the probability of adaptation in the space of binary
strings and derived optimal mutation rates depending on the distance from the global
optimum. More recently, numerical methods have been used to optimise a mutation
operator (Vafaee et al. 2010) that was based on the Markov chain model of GA by Nix
and Vose (1992), although the complexity of this method may restrict its application
to small spaces and populations. More recently, several authors have analysed the
run-time of the co-called (1 + 1)-evolutionary algorithm using constant and adaptive
mutation rates and demonstrating some advantages of the latter (Böttcher et al. 2010;
Sutton et al. 2011). Thus, the idea of using variable mutation rates to optimise evolu-
tionary dynamics is not new. Unfortunately, these results in the field of evolutionary
computation (EC) have specific computational focus, which limits their appeal for
biology.

First, theoretical work on EC has focused almost exclusively on systems of binary
strings. Optimisation ofmutation rates ofDNA strings, which have the alphabet of four
bases, involves analysis of a significantly more difficult combinatorics and geometry.
Previously, we presented some results on optimal mutation rates (Belavkin et al. 2011;
Belavkin 2011), which used formula (2) for the intersection of spheres in general
Hamming spaces. Here we give the derivation of this formula in Appendix 1 and show
how it can be used to generalise Fisher’s geometric model of adaptation in Sect. 2.

Second, the run-time analysis and optimisation of evolutionary algorithms is con-
cerned with their long term behaviour, which may have little relevance for biological
systems. For example, Böttcher et al. (2010) show that the run time of the (1 + 1)-
evolutionary algorithm is on the order of l2, where l is the length of a binary string. In
biological organisms, the typical length of DNA sequence is l ∈ [108, 1011] (and the
alphabet size is α = 4). Assuming the minimum of 20 minutes between replications,
the run-time of order l2 will significantly exceed 1014 years—the estimated time after
which stars will cease to exist in the Universe (Adams and Laughlin 1997). Moreover,
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biological landscapes may fail to have a global optimum to converge to, because the
set of all DNA sequences with variable lengths is infinite. In addition, biological land-
scapes are not static, and change on a regular basis. Thus, the short-term behaviour,
perhaps within one or several replications, is more important for optimisation of para-
meters in biological systems. Here we develop these insights regarding mutation rate
variation towards the particular issues presented by biological systems.

In Sect. 2 we show how the problem of optimal control of mutation rate can be
defined in different ways leading to different solutions. In some cases, these solutions
can be obtained analytically. For example, in the idealised geometric model, when
maximisation of fitness is equivalent to minimisation of distance to a global optimum,
the optimal mutation rates can be derived as functions of the distance (Belavkin 2012,
2013). This, however, is not the case for more realistic landscapes, which can be
rugged. In Sect. 3, we address how the control functions can be obtained numerically.
Although fitness landscapes have been analysed and classified in terms of hardness
for evolutionary algorithms (He et al. 2015), there is no general theory about optimal
mutation rates in arbitrary landscapes. The development of such theory is the main
focus and contribution of this paper. In Sect. 4, we consider a fitness landscape as a
communication channel between fitness values and distances from a nearest optimum.
We introduce various notions of monotonicity of a fitness landscape, and discuss how
these properties are related to the genotype-phenotype mapping. The main theoret-
ical result is a theorem about weak monotonicity of continuous landscapes, which
establishes the condition for a similarity between fitness and distance to an optimum
in a broad class of landscapes. This suggests a similarity between fitness-based and
distance-based optimal control functions for mutations rates.

These theoretical results allow us to formulate hypotheses about monotonicity
and mutation rate control in biological fitness landscapes. We test these hypotheses
by numerically obtaining optimal mutation rate control functions for 115 published
complete landscapes of transcription factor binding (Badis et al. 2009). Our results
presented in Sect. 5 show that all the optimal mutation rate control functions in these
biological landscapes do indeed converge to non-trivial forms consistent with the the-
ory developed here. We also observe differences among optimal mutation rate control
functions, variation that relates to variation in the landscapes’ monotonic properties.
We conclude in Sect. 6 by discussing how mutation rate control as considered here
may be manifested in living organisms.

2 Fisher’s geometric model of adaptation in Hamming space

In this section, we consider an abstract problem, in which organisms are represented
as points in some metric space and adaptation as a motion in this space towards
some target point (an optimal organism), and fitness is negative distance to target.
Minimisation of distance to the target is therefore equivalent tomaximisation of fitness.
Geometry of the metric space allows us to solve the optimisation problem precisely.
These abstract results will be used in the following sections to develop the theory
further bringing it closer to biology.
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2.1 Representation and assumptions

Let Ω be the set of all possible genotypes representing organisms. This set is usually
equipped with a metric d : Ω × Ω → [0,∞) related to the mutation operator, such
that large mutations correspond to large distance d(a, b) and vice versa. For example,
the set of all DNA sequences of length l ∈ N can be represented by vectors in the
Hamming space Hl

α := {1, . . . , α}l equipped with the Hamming metric dH (a, b) =
∑l

i=1 δai (bi ) counting the number of different letters in two strings. This choice of
metric is particularly suitable for a simple point-mutation, which will be the focus of
this paper. A sphere S(a, r) and a closed ball B[a, r ] of radius r ∈ [0,∞) around
a ∈ Ω are defined as usual:

S(a, r) := {b ∈ Ω : d(a, b) = r} , B[a, r ] := {b ∈ Ω : d(a, b) ≤ r}

We refer to r = d(a, b) as the mutation radius.
Environment defines a preference relation� (a total pre-order) so that a � bmeans

genotype b represents an organism that is better adapted to or has a higher replication
rate in a given environment than an organism represented by genotype a. We shall
consider only countable or even finite Ω , so that there always exists a real function
f : Ω → R such that

a � b ⇐⇒ f (a) ≤ f (b)

In game theory, such a function is called utility, but in the biological context it is
called fitness, and usually it is assumed to have non-negative values representing
replication rates of the organisms. The non-negativity assumption is not essential,
however, because the preference relation � induced by f does not change under a
strictly increasing transformation of f . Thus, our interpretation of fitness simply as a
numerical representation of a preference relation is distinct from population genetic
definitions of fitness (e.g. see Orr 2009). We shall assume also that there exists a top
(optimal) genotype � ∈ Ω such that f (�) = sup f (ω), which represents the most
adapted or quickly replicating organism. Note that a finite set Ω always contains at
least one top � as well as at least one bottom element ⊥.

Generally, one should consider also the set of all environments (including other
organisms), because different environments impose different preference relations on
Ω , which have to be represented by different fitness functions. In this paper, however,
we shall assume that fitness in any particular environment has been fixed.

During replication, genotypea canmutate intobwith transitionprobability P(b | a).
Mutation can have different effects on fitness: It can be deleterious, if f (a) > f (b);
neutral, if f (a) = f (b); or beneficial, if f (a) < f (b).

In this section, we consider a simple picture f (ω) = −d(�, ω), so that maximiza-
tion of fitness f (ω) is equivalent to minimization of distance d(�, ω), and adaptation
(beneficial mutation) corresponds to a transition from a sphere of radius n = d(�, a)

into a sphere of a smaller radius m = d(�, b), which is depicted in Fig. 1. This geo-
metric view ofmutation and adaptation is based on Ronald Fisher’s idea (Fisher 1930),
which was, perhaps, the earliest mathematical work on the role of mutation in adapta-
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Fig. 1 Mutation of point a in a
metric space into b with
mutation radius r = d(a, b).
The distances n = d(�, a) and
m = d(�, b) from an optimal
element � define the fitnesses of
a and b

a

b

r
n

m

tion. Fisher represented individual organisms by points of Euclidean spaceRl of l ∈ N

traits, and equipped with the Euclidean metric dE (a, b) = (
∑l

i=1 |bi − ai |2)1/2. The
top element � was identified with the origin in Rl , and fitness f (ω) with the negative
distance −dE (�, ω). Then Fisher used the geometry of the Euclidean space to show
that the probability of beneficial mutation decreases exponentially as the mutation
radius increases, and therefore mutations of small radii are more likely to be benefi-
cial. Despite subsequent development of the theory (Orr 2005), the use of Euclidean
space for representation was not revised.

Euclidean space is unbounded (and therefore non-compact) and the interior of any
ball has always smaller volume than its exterior. Therefore, assuming mutation in
random directions, a point on the surface of a ball around an optimum is always more
likely to mutate into the exterior than the interior of this ball. This simple property is
key for Fisher’s conclusion that adaptation is more likely to occur by small mutations.
We showed previously, however, that the geometry of a finite space, such as the Ham-
ming space of strings, implies a different relation between the radius of mutation and
adaptation (Belavkin et al. 2011; Belavkin 2011). In particular, the mutation radius
maximising the probability of adaptation varies as a function of the distance to the
optimum.

2.2 Probability of adaptation in a Hamming space

Considermutation of genotype a ∈ S(�, n) in aHamming spaceHl
α into b ∈ S(�,m)

with mutation radius r = d(a, b), as shown on Fig. 1. Assuming equal probabilities
for all points in the sphere S(a, r), the probability that the offspring is in the sphere
S(�,m) is given by the number of points in the intersection of spheres S(�,m) and
S(a, r):

P(m | n, r) = |S(�,m) ∩ S(a, r)|d(�,a)=n

|S(a, r)| (1)

where | · | denotes cardinality of a set (the number of its elements). The cardinality of
the intersection S(�,m)∩S(a, r)with condition d(�, a) = n is computed as follows:
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Fig. 2 Probability of adaptation P(m < n | n, r) in the Hamming space H100
4 as a function of mutation

radius r . Different curves show P(m < n | n, r) for different distances n = dH (�, a) of the parent string
from the optimum �

|S(�,m) ∩ S(a, r)|d(�,a) = n

=
∑

r0+r−+r+=min{r,m}
r+−r−=n−max{r,m}

(α − 2)r0
(
n − r+
r0

)

(α − 1)r−
(
l − n

r−

)(
n

r+

)

(2)

where summation runs over indexes r+ ∈ [0, �(n−|r−m|)/2�] and r− ∈ [0, �(r+m−
n)/2�] (here �·� denotes the floor operation) and satisfying conditions r0 + r− + r+ =
min{r,m} and r+ − r− = n − max{r,m}. See Appendix 1 for the derivation of
this combinatorial result. We point out that for r ≤ m, the indexes r+, r− and r0
count respectively the numbers of beneficial, deleterious and neutral substitutions in
r ∈ [0, l].

The cardinality of sphere S(a, r) ⊂ Hl
α is

|S(a, r)| = (α − 1)r
(
l

r

)

(3)

Equations (1)–(3) allow us to compute the probability of adaptation, which is the
probability that the offspring is in the interior of ball B[�, n]:

P(m < n | n, r) =
n−1∑

m=0

P(m | n, r) (4)

Figure 2 shows the probability of adaptation for Hamming spaceH100
4 as a function

of mutation radius r for different values of n = d(�, a). One can see that when
n < 75 (more generally when n < l(1−1/α)), the probabilities of adaptation decrease
with increasing radius r > 0, similar to Fisher’s conclusion for the Euclidean space.
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However, for n = 75 there is no such decrease, and when n > 75 (i.e. for n >

l(1 − 1/α)), the probability of adaptation actually increases with r . This is due to
the fact that, unlike Euclidean space, Hamming space is finite, and the interior of
ball B[�, n] can be larger than its exterior. The geometry of a Hamming space has
a number of interesting properties (Ahlswede and Katona 1977). For example, every
point ω has (α − 1)l diametric opposite points ¬ω, such that dH (ω,¬ω) = l, and the
complement of a ball B[ω, r ] inHl

α is the union of (α − 1)l balls B[¬ω, l − r − 1].

2.3 Random mutation

By mutation we understand a random process of transforming the parent string a into
offspring b, so that the mutation radius is a random variable. The simplest form of
mutation, called point mutation, is the random process of independently substituting
each letter in the parent string a ∈ {1, . . . , α}l to any of the other α − 1 letters
with probability μ. At its simplest, with one parameter, there is an equal probability
μ/(α − 1) of mutating to each of the α − 1 letters. The parameter μ is called the
mutation rate. For point mutation, the probability of mutating by radius r ∈ [0, l] is
given by the binomial distribution:

Pμ(r | n) =
(
l

r

)

μr (n)(1 − μ(n))l−r (5)

We assume that the mutation rate μ may depend on the distance n = d(�, a) from
the top string n, and therefore the probability is also conditional on n.

Optimisation of the mutation rate requires knowledge of the probability Pμ(m | n)

that mutation of a into b leads to a transition from sphere S(�, n) into S(�,m). This
transition probability can be expressed as follows:

Pμ(m | n) =
l∑

r=0

P(m | n, r) Pμ(r | n)

Substituting (1) and (5) into the above equation, and taking into account (3), we obtain
the following expression:

Pμ(m | n) =
l∑

r=0

|S(�,m) ∩ S(a, r)|d(�,a)=n

(α − 1)r
μr (n)(1 − μ(n))l−r (6)

where the number |S(�,m) ∩ S(a, r)|d(�,a)=n is given by Eq. (2). The case α = 2
was investigated previously by several authors (e.g. Bäck 1993; Braga and Aleksander
1994). The expressions for arbitrary alphabets were first presented in (Belavkin et al.
2011) (see also Belavkin 2011).

We note that simple, one parameter point mutation is optimal in a certain sense: it
is the solution of a variational problem of minimisation of expected distance between
points a and b in a Hamming space subject to a constraint on mutual information
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between a and b (see Belavkin 2011, 2013). The constraint on mutual information
between strings a and b represents the fact that perfect copying is not possible. The
optimal solutions to this problem are conditional probabilities having exponential form
Pβ(b | a) ∝ exp[−β d(a, b)], where parameter β > 0, called the inverse tempera-
ture, is related to the mutation rate, and it is defined from the constraint on mutual
information. The reason why this exponential solution in the Hamming space corre-
sponds to independent substitutions with the same probability μ/(α − 1) is because
Hamming metric is computed as the sum dH (a, b) = ∑l

i=1 δai (bi ) of elementary
distances δai (bi ) between letters ai and bi in i th position in the string, and the values
δai (bi ) are equal to zero or one independent of the specific letters of the alphabet or
their position i . Other, more complex mutation operators, which incorporate multiple
parameters or non-independent substitutions (the phenomenon known in biology as
epistasis) can be considered as optimal solutions of the same variational problem, but
applied to a different representation space H with a different metric.

2.4 Optimal control of mutation rates

The fact that the transition probability Pμ(m | n), defined by Eq. (6), depends on
the mutation rate μ introduces the possibility of organisms maximising the expected
fitness of their offspring by controlling themutation rate.We call the collection of pairs
(n, μ) the mutation rate control function μ(n). Indeed, let Pt (a) be the distribution of
parent genotypes inHl

α at time t , and let Pt (n) = ∑
a:d(�,a)=n Pt (a) be the distribution

of their distances n = dH (�, a) from the optimum. Transition probabilities Pμ(m | n)

define a linear transformation Tμ(n)(·) := ∑l
n=0 Pμ(m | n)(·) of distribution Pt (n)

into distribution Pt+1(m) of distances m = dH (�, b) of their offspring at time t + 1:

Pt+1(m) = Tμ(n)Pt (n) =
l∑

n=0

Pμ(m | n)Pt (n)

If this transformation does not change with time, then the distribution Pt+s(m) after
s generations is defined by T s

μ(n), the sth power of Tμ(n). The optimal mutation rates
can be found (at least in principle) by minimising the expected distance subject to
additional constraints, such as the time horizon λ:

min
μ(n)

EPt+s {m} =
l∑

m=0

m
(
T s

μ(n)Pt (n)
)

subject to s ≤ λ (7)

For example, mutation rates minimising the expected distance at λ = 1 generation
should depend on n according to the following step function:

μ(n) =
⎧
⎨

⎩

0 if n < l(1 − 1/α)

1 − 1/α if n = l(1 − 1/α)

1 if n > l(1 − 1/α)

(8)
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Fig. 3 Different optimal mutation rate control functions derived mathematically to optimise different
criteria in Hamming space H10

4 : step function minimising expected distance to optimum in one gener-
ation, linear function maximising probability of mutating directly into optimum, a function maximising
conditional probability P(m < n | n) that an offspring is closer to optimum than its parent, cumulative

distribution function P0(m < n) = ∑n−1
m=0

( l
m
) (α−1)m

αl
minimising expected distance to optimum subject

to an information constraint (Belavkin 2012)

This function is shown on Fig. 3 for Hamming space H10
4 . The sudden change of the

optimal mutation rate from μ = 0 at n < l(1 − 1/α) to μ = 1 at n > l(1 − 1/α)

corresponds to the sudden change of the effect of themutation radius on the probability
of adaptation shown on Fig. 2. Note that this mutation control function is not optimal
for minimisation of the expected distance up to λ > 1 generations, because strings
that are closer to the optimum than l(1−1/α) do not mutate, so that there is no chance
of improvement.

The variational problem for the optimal control of the mutation rate, such as
problem (7), can be formulated in different ways optimising different criteria (e.g.
instantaneous or cumulative expected distance, probability of adaptation, probability
of mutating directly into the optimum) or taking into account additional constraints
(e.g. the time horizon, information constraints), and generally they lead to different
solutions. Previously, we investigated various types of such problems and obtained
their solutions (Belavkin et al. 2011; Belavkin 2011, 2012), some of which are shown
on Fig. 3. One can see that there is no single optimal mutation rate control function.
However, it is also evident that all these control functions have a common property of
monotonically increasing mutation rate with increasing distance from the optimum.
The main question that we are interested in this paper is whether such monotonic
control of mutation rate is beneficial in a broader class of landscapes, when fitness
is not equivalent to distance. In Sect. 4, we shall further develop the theory from the
simple case considered in this section tomore general fitness landscapes and formulate
hypotheses which will be tested in biological landscapes in Sect. 5. To generate data
for this testing, we develop an evolutionary technique in Sect. 3 to obtain approxima-
tions to the optimal control functions in a broad class of problems, when the derivation
of exact solutions is impractical or impossible.
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3 Evolutionary optimisation of mutation rate control functions

Analytical approaches cannot always be applied to derive optimalmutation rate control
functions due to high problem complexity. Moreover, when fitness is not equivalent to
negative distance, the transition probabilities between fitness levels may be unknown,
so that analytical solutions are impossible. Another approach is to use numerical opti-
misation to obtain approximately optimal solutions. In this section, we describe an
evolutionary technique that uses two genetic algorithms. The first, which we refer
to as the Inner-GA, evolves individual string with the mutation rate controlled by
some function μ(y) that maps fitness value y = f (ω) of a string to its mutation rate
μ ∈ [0, 1]. The second, which we refer to as the Meta-GA, evolves a population
{μ1(y), . . . , μn(y)} of such mutation rate control functions for better performance
of the Inner-GAs. Note that the Inner-GA can use any fitness function. In this sec-
tion, we shall apply the technique to the case when fitness is equivalent to negative
distance from an optimum (a selected point in a Hamming space). The purpose of
this exercise is to demonstrate that the functions μ(y) evolved by the Meta-GA have
monotonic properties, similar to those possessed by the optimal mutation rate control
function obtained analytically. Later we shall apply the technique to more general
fitness landscapes.

3.1 Inner-GA

The Inner-GA is a simple generational genetic algorithm, where each genotype is a
string in Hamming space Hl

α , and the optimal string is defined by a fitness function
y = f (ω). The initial population of 100 individuals had equal numbers of individuals
at each fitness value, and they were evolved by the Inner-GA for 500 generations
using simple point mutation. The mutation rates were controlled according to function
μ(y), specified by the Meta-GA, with fitness values as the input. In the experiments
described, we used no selection and no recombination in order to isolate the effect on
evolution of the mutation rate control from other evolutionary operators.

Note that the parameters of the Inner-GA (e.g. population size, the number of
generations) were chosen empirically to satisfy two conflicting objectives: On one
hand, the parameters should be large enough to get any sort of convergence at the
Meta-GA level; on the other hand, the parameters should be small enough for the
system to obtain satisfactory results in feasible time (in our case several months of
run-time using a cluster of 72 GPUs).

3.2 Meta-GA

The Meta-GA is a simple generational genetic algorithm that uses tournament selec-
tion, which is known to be robust for fitness scores on arbitrary scales and shifts,
and because of its suitability for highly parallel implementation. Each genotype in
the Meta-GA is a mutation rate function μ(y) of fitness values y. The domain of
μ(y) is an ordered partition of the range {y : f (ω) = y, ω ∈ Hl

α} of the Inner-
GA fitness function. Thus, individuals in the Meta-GA are strings of real values
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μ ∈ [0, 1] representing probabilities of mutation at different fitnesses, as used in the
Inner-GA.

At each generation of the Meta-GA, multiple copies of the Inner-GA were evolved
for 500 generations, with the mutation rate in each copy controlled by a different func-
tionμ(y) taken from the Meta-GA population. We used populations of 100 individual
functions, which were initialised to μ(y) = 0. All runs within the same Meta-GA
generation were seeded with the same initial population of the Inner-GA. The Meta-
GA evolved functions μ(y) for 5 · 105 generations to maximise the average fitness
ȳ(t) ≈ E{y}(t) in the final generation of the Inner-GA.

The Meta-GA used the following selection, recombination and mutation methods:

• Randomly select (without replacement) three individuals from the population and
replace the least fit of these with a mutated crossover of the other two; repeat
with the remaining individuals until all individuals from the population have been
selected or fewer than three remain.

• Crossover recombines the start of the numerical string representing one mutation
rate function with the end of another using a single cut point chosen randomly,
excluding the possibility of being at either end, so that there are no clones.

• Mutation adds a uniform-randomnumberΔμ ∈ [−.1, .1] to one randomly selected
value μ (mutation rate) on the individual mutation rate function, but then bounds
that value to be within [0, 1].
The Meta-GA returns the fittest mutation rate function μ(y). In this study, the

parameters in the Meta-GA were not optimised, as this would probably take more
computational time than conducting the study itself. However, given that Meta-GA
converged to the same result, the only difference the parameters could make were how
quickly the result was found.

3.3 Evolved control functions

The kind of mutation rate control function the Meta-GA evolves depends greatly
on properties of the fitness landscape used in the Inner-GA. In Sect. 2.4 we showed
theoretically that for f (ω) corresponding to negative distance to optimum−dH (�, ω),
the optimal mutation rate increases with n = dH (�, ω). Therefore, the population of
mutation rate functions in theMeta-GA should evolve the same characteristics in such
a landscape. Figure 4 shows the average and standard deviations of the fittest control
functions evolved in 20 runs of the Meta-GA using Inner-GAs with strings inH10

4 (i.e.
α = 4, l = 10) and fitness defined by f (ω) = −dH (�, ω). As predicted, the mutation
rate increases with n = dH (�, ω). We shall now consider more complex landscapes.

4 Weakly monotonic fitness landscapes

The derivation of variable (or adaptive) optimal mutation rates described in Sect. 2.4
was based on the assumption that fitness f (ω) is equivalent to negative distance
−d(�, ω) from the top genotype. Biological fitness landscapes, however, can be
rugged (Lobkovsky et al. 2011), meaning that fitness may have very little relation
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Fig. 4 Means and standard deviations of mutation rates evolved to minimise expected distance to the
optimum in Hamming spaceH10

4 after 500 generations. The results are based on 20 runs of the Meta-GA,

each evolving mutation rates for 5 · 105 generations. Each generation of the Meta-GA involved running the
Inner-GAs for 500 generationswith 100 individuals.Dashed lines represent theoretical functions optimising
short-term (step) and long-term (linear) criteria

to distance in the space of genotypes. In this section, we consider a more general
relation between fitness and distance to study the effect of variable mutation rates on
adaptation in more biologically realistic landscapes. We begin by considering fitness
as a noisy or partially observed distance, and then discuss monotonic relation between
these ordered random variables. We introduce several notions of monotonicity and
then prove a theorem on weak monotonicity in a general class of fitness landscapes.

4.1 Fitness-distance communication

If fitness y = f (ω) is not isomorphic with distance n = d(�, ω), but there is some
degree of dependency between the two variables, then one could try to estimate unob-
served distance from observed values of fitness and employ the control function μ(n)

of mutation rate based on the estimated distance. Such a control becomes ε-optimal,
where ε represents some deviation from optimality. The estimation of distance could
be done sequentially using, for example, the filtering theory (Stratonovich 1959). Here,
however, we shall limit our discussion to a simple case of using just the current fitness
value yt instead of current distance nt to control the mutation rate.

Given a distribution P(ω) of strings in Ω (e.g. a uniform distribution P(ω) = α−l

on a Hamming space Hl
α), the fitness y = f (ω) and distance n = d(�, ω) is a

pair of random variables with joint distribution P(y, n). Note that if Ω has multiple
optima�, then n should be understood as the distance from the nearest optimum: n =
inf{d(�, ω) : � ∈ Ω}. Joint distribution P(y, n) defines conditional probabilities
P(n | y) and P(y | n) by the Bayes formula. Mutation of string a into string b
results in the change of distance from nt = d(�, a) to nt+1 = d(�, b) and the change
of fitness from yt = f (a) to yt+1 = f (b). If fitness does not communicate more
information about the distance than distance itself (i.e. fitness is a ‘noisy’ distance),
then one can show that fitness and distance are conditionally independent: P(yt+1, yt |
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nt+1, nt ) = P(yt+1 | nt+1) P(yt | nt ) (see Remark 1 in Appendix 2). In this case,
the transition probability Pμ(yt+1 | yt ) between fitness values is expressed using
the following composition of transition probabilities P(nt | yt ), Pμ(nt+1 | nt ) and
P(yt+1 | nt+1):

Pμ(yt+1 | yt ) =
l∑

nt+1=0

l∑

nt=0

P(yt+1 | nt+1)Pμ(nt+1 | nt )P(nt | yt )

(see Appendix 2 for details). The transition probability Pμ(nt+1 | nt ) is defined by
the geometry of the mutation operator in the space of genotypes Ω , and for simple
point mutation in a Hamming space it is given by Eq. (6). Conditional probabilities
P(nt | yt ) and P(yt+1 | nt+1) are defined by the fitness landscape, and they represent
dependency between fitness and distance.

The simplest and, perhaps, the most important such relationship is linear depen-
dency, represented by correlation. The fitness-distance correlation has been used
previously to describe problem difficulty for evolutionary algorithms (Jones and For-
rest 1995; Jansen 2001) and neutral mutations (Poli and Galvan-Lopez 2012). The
fitness-distance correlation reflects global monotonic dependency between the pair of
ordered random variables. In biological context, however, such a global measure of
monotonicity may be less important, because biological organisms tend to populate
some neighbourhoods of local optima of fitness landscapes due to selection. Thus,
we define the concepts of local and weak monotonicity relative to a chosen metric.
We shall also prove that all landscapes that are continuous and open at local optima
are weakly monotonic. This result will allow us to formulate three hypotheses about
control of mutation rates in biological landscapes, which we shall test experimentally
in Sect. 5.

4.2 Monotonicity of fitness and distance

Wefirst consider monotonic relationships between values of fitness function f : Ω →
R at points a, b ∈ Ω and their distances to an arbitrary point ω given by a metric
d : Ω × Ω → R+ (e.g. a Hamming metric in Hl

α). If all a and b inside some ball
B[ω, n], n > 0, satisfy the properties below, we say that:

• f is locally monotonic relative to metric d at ω if:

−d(ω, a) ≤ −d(ω, b) �⇒ f (a) ≤ f (b)

• d is locally monotonic relative to f at ω if:

−d(ω, a) ≤ −d(ω, b) ⇐� f (a) ≤ f (b)

• f and d are locally isomorphic at ω if both implications hold.
• We say that d or f are globally monotonic (isomorphic) at� relative to each other
if the relevant property holds over B[ω, l] ≡ Ω .
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(a) (b) (c)

Fig. 5 Schematic representation of monotonic properties described. Abscissae represent string space,
ordinates represent fitness. a Fitness is monotonic relative to distance to optimum (fitness landscape can
have ‘plateaus’); b distance to optimum is monotonic relative to fitness (landscape can have ‘cliffs’); c
fitness and distance to optimum are isomorphic (neither cliffs nor plateaus are allowed)

The three monotonic relations between fitness and distance defined above are illus-
trated on Fig. 5. These cases represent idealised situations, because usually the value
of distance does not define the value of fitness uniquely and vice versa. Indeed, the
pre-image of distance d(�, ω) = n is a sphere S(�, n) := {ω : d(�, ω) = n}, and
there can be strings with different fitness values within the sphere. Similarly, the pre-
image of fitness f (ω) = y is the set f −1(y) = {ω : f (ω) = y}, and strings within this
set may have different distances from �. Thus, to describe monotonicity in realistic
landscapes, one canmodify the definitions by considering the ‘average’ (i.e. expected)
fitness or distance within the sets. In particular, we shall denote the average fitness at
distance d(�, ω) = n and the average distance at fitness f (ω) = y respectively as
follows:

E[ f (ωn)] := 1

|S(�, n)|
∑

ω∈S(�,n)

f (ω) , E[d(�, ωy)] := 1

| f −1(y)|
∑

ω∈ f −1(y)

d(�, ω)

The above averages are particular cases of conditional expectations under the assump-
tion of a uniform distribution P(ω) = α−l of strings in a Hamming space Hl

α .
Appendix 3 gives definitions for arbitrary Borel probabilitymeasure on ametric space.

In what follows, we shall use specific notation E[ f (a)], with letter ‘a’ instead of
ωn , to denote average fitness at distance d(�, ω) = d(�, a) (instead of d(�, ω) = n).
Similarly, we shall use notation E[d(�, a)], with a specific letter ‘a’ instead of ωy , to
denote average distance at fitness f (ω) = f (a) (instead of f (ω) = y). Such notation
is convenient to define average (mean) monotonicity. If all a and b inside some ball
B[ω, n], n > 0, satisfy the properties below, we say that:

• f is on average locally monotonic relative to metric d at ω if:

−d(ω, a) ≤ −d(ω, b) �⇒ E[ f (a)] ≤ E[ f (b)]

• d is on average locally monotonic relative to f at ω if:

−E[d(ω, a)] ≤ −E[d(ω, b)] ⇐� f (a) ≤ f (b)

• f and d are on average locally isomorphic at ω if both implications hold.

If ω is a local optimum in a finite space (e.g. a Hamming space), then fitness and
distance are always locally monotonic relative to each other (and hence isomorphic)
at least inside the ball B[ω, 1] of radius one (otherwise, ω cannot be a local opti-
mum). However, if the size |Ω| of the space is large, then the neighbourhood becomes
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negligible, and therefore the notions of local monotonicity become less important in
larger landscapes. For larger neighbourhoods one can speak only about the probability
that the implications above are true for some pair of points a and b. Thus, for larger
neighbourhoods we can define monotonicity in probability (or in measure). How-
ever, because monotonicity always holds with some (possibly zero) probability, and it
holds trivially with probability one at each point (i.e. in a zero-radius ball B[ω, 0]), we
should make such a definition more useful by distinguishing, for example, landscapes,
in which the probability of monotonicity gradually increases as points get closer to a
local optimum. We refer to this notion as weak monotonicity.

Let {ωn}n∈N be a sequence of points such that the distances d(ω, ωn) converge to
zero or fitness values f (ωn) converge to f (ω). If a, b ∈ {ωn}n∈N of any such sequence
satisfy the properties below, we say that:

• f is weakly monotonic relative to metric d at ω if:

lim
d(ω,b)→0

P{−d(ω, a) ≤ −d(ω, b) �⇒ E[ f (a)] ≤ E[ f (b)]} = 1

• d is weakly monotonic relative to f at ω if:

lim
f (b)→ f (ω)

P{−E[d(ω, a)] ≤ −E[d(ω, b)] ⇐� f (a) ≤ f (b)} = 1

• f and d are weakly isomorphic at ω if both conditions hold.

Weak monotonicity is implied by the average local monotonicity in some ball
B[ω, n] with n > 0, because the latter means that the implications above hold with
probability one in B[ω, n]. The average local monotonicity is in turn implied by the
(strong) local monotonicity. The relation between the three notions is shown by the
implications below:

Local monotonicity ⇒ average local monotonicity ⇒ weak monotonicity

Moreover, one may consider an increasing sequence of finite landscapes such that in
the limit |Ω| → ∞ the landscape is modelled by a continuum metric space. In this
case, fitness may fail to be monotonic at any point, including the global optimum, even
if fitness is a continuous function. Indeed, it is well known that almost all continuous
functions are nowhere differentiable, and therefore they are also nowhere monotonic
(Banach 1931;Mazurkiewicz 1931). However, as will be shown by the theorem below,
weaker monotonicity may still hold in such landscapes.

Like weak monotonicity, fitness-distance correlation can also be applied to infinite
landscapes, including nowheremonotonic landscapes.However,while fitness-distance
correlation describes global property of a landscape, weak monotonicity effectively
describes a gradual increase of fitness-distance correlation in decreasing neighbour-
hoods of a point. Thus, although weak monotonicity is related to fitness-distance
correlation, these notions are not equivalent. In fact, unlike fitness-distance correla-
tion, weak monotonicity holds in a very broad class of landscapes, including infinite
landscapes.
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Theorem 1 Let (Ω, d) be a metric space equipped with a Borel probability measure
P, and let f : Ω → R be P-measurable. Let � be a local optimum: f (�) =
sup{ f (ω) : ω ∈ E ⊆ Ω}. Then

(⇒) If f is continuous at �, then f is weakly monotonic relative to d at �.
(⇐) If f maps open balls B[�, δ) ⊆ E to open intervals ( f (�) − ε, f (�)], then

d is weakly monotonic relative to f at �.
(⇐⇒) If f satisfies both conditions then f and d are weakly isomorphic at �.

The proof of this theorem is given in Appendix 3, and it is based on the construction
of a decreasing sequence {δn}n∈N of radii δn > 0 around� for any increasing sequence
{ f (�)−εn}n∈N, which is guaranteed by continuity of f at�. Note that we usedmetric
in the theorem, because metric spaces are well-understood, but the theorem and its
proof can be reformulated in terms of a quasi-pseudometric. Every quasi-uniform
space with countable base (and hence every corresponding topological space) is quasi-
pseudometrisable (e.g. see Fletcher and Lindgren 1982, Theorem 1.5), which probably
subsumes any topology on DNA or RNA structures (Stadler et al. 2001).

Weak monotonicity implies increasing probability of positive correlation between
fitness and negative distance to a local or global optimum in decreasing neighbour-
hoods. This suggests that the fitness-based control μ(yt ) of mutation rate in any
continuous and open landscape should resemble the distance-based control μ(nt )
in some neighbourhood of an optimum. This forms our first hypothesis:

Hypothesis 1 Optimal mutation rate increases with a decrease in fitness in some
neighbourhood of an optimum for realistic fitness landscapes (e.g. biological land-
scapes), where fitness is not globally isomorphic to distance.

Further, the more monotonic the landscape, the more the optimal mutation rate control
functionwill resemble theoretical functions derived and discussed in Sect. 2; this forms
our second hypothesis:

Hypothesis 2 The larger the neighbourhood of weakmonotonicity, the moremutation
rate control may contribute to evolution towards high fitness.

We test these hypotheses in Sect. 5.

4.3 On the role of genotype-phenotype mapping

Mutation occurs at the microscopic level as a random change of a genotype, whereas
fitness is defined by the interaction of an organism with its environment, and therefore
is a property of the phenotype rather than genotype. If we denote by X the set of all
phenotypes, then fitness of genotypes f : Ω → R can be factorised into a composition
f = ϕ ◦ κ of a genotype-phenotype mapping κ : Ω → X and phenotypic fitness
ϕ : X → R.Weuse a function κ for genotype-phenotypemapping, becausewe assume
for simplicity that one genotype cannot be decoded into two or more phenotypes. On
the other hand, there are usuallymany genotypes corresponding to the same phenotype
(Schuster et al. 1994). The genotype-phenotype mapping κ can be seen as a black-box
model of DNA decoding via translation and transcription.
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The set X of phenotypes is pre-ordered by the values of phenotypic fitness (x �X

z iff ϕ(x) ≤ ϕ(z)), while the set Ω of genotypes is pre-ordered by the values of
distance from the nearest top genotype (a �Ω b iff −d(�, a) ≤ −d(�, b)). It is clear
from factorisation f = ϕ ◦ κ that the relation between fitness f of genotypes and
their distance from an optimum depends on monotonic properties of the genotype-
phenotype mapping. For example, genotypic fitness is order-isomorphic with distance
when the genotype-phenotype mapping satisfies the condition: a �Ω b if and only if
κ(a) �X κ(b).

The factorisation f = ϕ ◦ κ shows that part of the fitness function, specifically κ ,
is property of an organism, and therefore a monotonic relation between fitness and
distance can be an adaptive and evolving property. This forms our third hypothesis:

Hypothesis 3 The extent to which mutation rate control may contribute to the evo-
lution of high fitness is itself a trait, which will evolve across biological organisms.

We analyse data that may support this hypothesis in Sect. 5.

5 Evolving fitness-based mutation rate control functions

In this section, we conduct a computational experiment using landscapes with bio-
logical origins to test the hypotheses arising from our theory in Sect. 4. We used the
earlier described Meta-GA technique (see Sect. 3) to evolve approximately optimal
functions for 115 published complete landscapes of transcription factor binding (Badis
et al. 2009). This also allows us to establish the range of fitness values over which
monotonicity of optimal mutation rate holds, quantifying the extent to which Hypoth-
esis 1 holds for these biological landscapes. TFs have evolved over very long periods
to bind to specific DNA sequences. The landscapes show experimentally measured
strengths of interaction (DNA-TF binding score) between the double-stranded DNA
sequences of length l = 8 of base pairs each and a particular transcription factor. Thus,
we represent the set of all DNA sequences by Hamming spaceH8

4 (i.e. α = 4, l = 8),
and consider the DNA-TF binding score as their fitness, which is clearly different from
the negative Hamming distance from the top string (a sequence with the maximum
DNA-TF binding score).

5.1 Evolved control functions

We used the Meta-GA evolutionary optimisation technique, described in Sect. 3, to
obtain for each landscape an approximately optimal mutation rate control function
maximising the average DNA-TF binding score in the population (expected fitness)
after 500 replications. Our experiments showed that 16 replicate runs1 were sufficient
to achieve satisfactory convergence in feasible time for each of the 115 transcription
factor landscapes.

1 We used a multiple of 4 due to 4 GPUs used in one node.
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Fig. 6 Examples of GA-evolved optimal mutation rate control functions. Data are shown for the transcrip-
tion factors Srf, Glis2 and Zfp740. Each curve represents the average of 16 independently evolved optimal
mutation rate functions on a particular transcription factor DNA-binding landscape (Badis et al. 2009).
Error bars represent standard deviations from the mean. Similar curves for all 115 landscapes are shown
in supplementary Fig. 9. The arrows indicate the monotonicity radius ε, that defines an interval of fitness
values below the maximum, where mutation rate monotonically increases

Figure 6 shows the average values and standard deviations of the evolved mutation
rates for three transcription factors: Srf, Glis2 and Zfp740. Evolved functions for all
landscapes are shown on Figure 9 in supplementary material. One can see that the
evolved functions for each transcription factor landscape is approximately monotonic
in the direction predicted: close to zero mutation at the maximum fitness, rising to
high levels further from the maximum fitness value. This supports Hypothesis 1 as
developed from the theory in Sect. 4.

Small standard deviations indicate good convergence to a particular control func-
tion. Observe that there is poor convergence at low fitness areas of the landscape that
are poorly explored by the genetic algorithm. Once the mutation rate has peaked near
the maximum value μ = 1, the mutation rates tend to decrease and become chaotic.
As will be shown in the next section, this occurs at lower fitness values at which the
landscape is no longer monotonic (i.e. further from the peak of fitness).

5.2 Landscapes for transcription factors

The variation in the evolved mutation rate control function is clearly related to a
variation in the properties of the landscapes. Our theoretical analysis suggests that the
main property affecting mutation rate control is monotonicity of the landscape relative
to a metric measuring the mutation radius. In particular, the radius of point-mutation is
measured by theHammingmetric, andwe shall look into the local andweakmonotonic
properties of the transcription factors landscapes relative to the Hamming metric.
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Fig. 7 Examples of fitness landscapes based on the binding score betweenDNAsequences and transcription
factors (TF) from (Badis et al. 2009). Data are shown for the transcription factors: Srf, Glis2 and Zfp740.
Lines connect mean values of the binding score shown as functions of the Hamming distance from the
top string (a sequence with the highest DNA-TF binding score). Error bars represent standard deviations.
Similar curves for all 115 landscapes are shown in supplementary Fig. 10

Figure 7 shows average DNA-TF binding scores within spheres S(�, n) around the
optimal string as a function of Hamming distance n = dH (�, ω) from the optimum.
Data is shown for three transcription factors: Srf, Glis2 and Zfp740. Lines connect
average values at discrete distances for visualisation purposes. Error bars show stan-
dard deviations of the DNA-TF binding scores within the spheres. Distributions of
fitness with respect to Hamming distance dH (�, ω) for all 115 transcription factors
are shown on Figure 10 (supplementary material).

One can see from Fig. 7 that the landscape for the Srf factor has monotonic proper-
ties: the average values increase steadily for strings that are closer to the optimum, and
the deviations from the mean within the spheres are relatively small. This is in contrast
to the other two landscapes. We note also that the average values for Glis2 decrease
quite sharply around the optimum, while the landscape for Zfp740 has a relatively
flat plateau area around the optimum, which means that there are many sequences
with high DNA-TF binding score. This difference may explain different gradients of
optimal mutation rates near the maximum fitness shown on Fig. 6.

5.3 Monotonicity and controllability

Our results have confirmed that the evolved optimal mutation rates rise from zero to
very high levels as fitness decreases from the maximum value f (�) to some value
f (�) − ε (see Fig. 6 and supplementary Fig. 9). We refer to the corresponding value
ε > 0 as the monotonicity radius, as it defines the neighbourhood of � in terms
of fitness values in which the evolved mutation rate control function has monotonic
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Fig. 8 Linear relation between monotonicity of the landscapes measured by the Kendall’s τ correlation
(ordinates) and the monotonicity radius ε (abscissae) of the corresponding evolved mutation rate control
functions. Three labels show data for three transcription factors shown in Figs. 6 and 7

properties. We find substantial variation in monotonicity radius among transcription
factors.

We hypothesised that the variation in the optimal mutation rate control functions
relates to variation in themonotonicity of the transcription factor landscapes (Hypothe-
sis 2). Variousmeasures have been proposed for the roughness of biological landscapes
(Lobkovsky et al. 2011). Here we focus on Kendall’s τ correlation, which is directly
concerned with monotonicity; specifically, τ measures the proportion of mutations
that, in moving closer to the optimum in string space, also increase in fitness. As
shown in Fig. 8, we find that the value of τ of the landscape does indeed have a rela-
tionship with the monotonicity radius ε of the evolved mutation rate control functions
(Spearman’s ρ = 0.77, P ≈ 10−16, N = 115), supporting Hypothesis 2.

Finally, we investigated whether these related features of the TF landscapes and
mutation rate functions themselves relate to the biological evolution of these TF sys-
tems. To test this we looked at the evolutionary origins of the TF families, to which
the 115 TFs tested above belonged, using an integer scale indicating key splits in the
tree of eukaryotic life (Weirauch and Hughes 2011). We find a significant relationship
between this scale of biological evolution and the monotonicity radius ε (Spearman’s
ρ = 0.21, P = 0.021, N = 115). This indicates that TFs in families that originated
more recently (e.g. in families restricted to Deuterostomes, rather than being present
across all eukaryotic life) tend to have broader regions over which the optimal muta-
tion rate monotonically increases with distance from the binding optimum. This is
consistent with Hypothesis 3, indicating that the extent to which mutation rate control
may contribute to the evolution of high fitness itself evolves through the tree of life.
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6 Discussion

In this paperwe have developed and tested theory relating to the control of themutation
rate in biological sequence landscapes. To do so, we had to move the theory closer to
the biology in three ways. Firstly (in Sect. 2), we generalised Fisher’s geometric model
of adaptation, from its Euclidean space (continuous and infinite) to a discrete, finite
Hamming space of strings. Doing so demonstrated that, in contrast to the behaviour
in Euclidean space, where the probability of beneficial mutation behaves similarly at
different distances from the optimum (Orr 2003), the probability of beneficial muta-
tion, for a given mutation size, varies markedly depending on the distance from the
optimum (Fig. 2). Secondly, we analytically derived functions for optimal control of
the mutation rate minimising the expected Hamming distance to a particular point
(optimal string). We also demonstrated a variation of these control functions depen-
dent on specific formulations of the optimisation problem. Nonetheless we observed
consistency: all optimal functions increase monotonically (Fig. 3). Thirdly, we devel-
oped theory concerning monotonic properties of fitness landscapes and establishing
sufficient conditions of weak monotonicity. The theory demonstrated that all biologi-
cal landscapes over discrete spaces, however rugged, are characterised by monotonic
properties in some neighbourhood of the optimum. Therefore, optimal solutions to the
geometric problem of optimal mutation rate control based on distance can be applied
more broadly to problems of ε-optimal control of mutation rate based on fitness in
biological systems.

Empirical biological fitness landscapes mapping genotypes to fitness values within
a small, defined, subset of genotypic space are becoming increasingly available (de
Visser and Krug 2014). Here we use the test case of the affinities of 115 different
transcription factors for all possible eight base-pair DNA sequences (Badis et al.
2009). We used these landscapes to test hypotheses arising from the theory, relating to
the nature of optimal mutation rate functions (Hypothesis 1; Figs. 6, 7, 8). In each case
we find evidence to support the hypothesis, consistent with the idea that our theory
is not only correct, but, as expected, substantively relevant to such biological fitness
landscapes.

Given thatwe find this theory to be relevant to biological fitness landscapes, we need
to ask how it might manifest itself within biology. There are several requirements if
biological organisms are to exert any approximation to optimal mutation rate control.
The first requirement is variation in mutation rate. There is evidence for abundant
variation in biological mutation rates, both across species (Sung et al. 2012) and
among populations of a species (Bjedov et al. 2003). Variation is therefore possible.
However, for this theory to be relevant, that variation needs to be controllable by
the organism. This in turn requires that mutation rate varies right down to the level
of an individual genotype, i.e. mutation rate plasticity (MRP). There is evidence for
MRP in ‘stress-induced mutagenesis’ (Galhardo et al. 2007) and related phenomena,
such as the increased number of mutations in sperm from older males (Kong et al.
2012). However, while this constitutes MRP, the possibility of control requires that
this plasticity is not merely the inevitable result of an organism’s environment (e.g.
the accumulation of damage with time or due to stress factors), but controllable by the
organism in response to that environment. The proximate and ultimate causes of stress-
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induced mutagenesis are much debated, but that they include any form of ‘control’ is
far from clear (MacLean et al. 2013). Clearer evidence of control is, however, present
in a novel example of MRP we described recently (Krašovec et al. 2014). In this case,
there is environmentally dependentMRP that can be switched on or off by the presence
or absence of a particular gene (luxS).

The next requirement for a biological analogue of the theory described here is that
control of the mutation rate may be exercised as a decreasing function of fitness. This
requires that an organism can somehow assay its own fitness. This is a non-trivial
requirement in that fitness is a function of one or more generations of an organism’s
offspring, not of an organism itself. Various proxies are conceivable that might give an
organism an indication of its fitness. These include counting its offspring relative to
some internal or external clock, counting the population as a whole, or testing aspects
of the environment thatmay correlatewith the future likelihood of offspring. The last of
these could include stressors,meaning that stress-inducedmutagenesismightmeet this
requirement. In our recently identified example, the aspect of the environment with
which mutation rate varies is the density of a bacterial culture. Population density
can act as a good proxy for fitness in some circumstances (e.g. in a fixed volume
bacterial culture), and the mutation rate does indeed decrease with increasing density
(Krašovec et al. 2014), consistent with the fitness-associated control of mutation rate
we here determine to be optimal.

The final requirement for the existence of biological mutation-rate control of the
sort addressed here is that it is possible for it to evolve and be maintained by the
processes of biological evolution. This is not trivial in that it involves the evolution
of plasticity, which is not as straight-forward or common in biology as might be
expected (Scheiner and Holt 2012). It also involves so-called ‘second-order selection’
(Tenaillon et al. 2001). This is because any particular mutation rate orMRP is unlikely
to affect an individual’s fitness (and therefore selection) directly; rather, MRP must
be selected for indirectly via the genetic effects it produces. Nonetheless, phenotypic
plasticity occurs widely and, while rare, there are clear examples of second-order
selection occurring in biology (Woods et al. 2011). Furthermore, here we demonstrate
MRP rapidly evolving de novo to particular forms (Fig. 6). The genetic algorithm
(GA) in this case was not created to mimic biology, and the group-selection used
by the outer GA in particular is rather un-biological. However, others, working with
explicitly biological population genetic models, also find the evolution of MRP (Ram
and Hadany 2012). This implies that not only is the MRP predicted here possible for
biological organisms, but it may reasonably be expected to evolve and be maintained.
It remains to be tested whether the precise range and nature of the MRP identified by
Krašovec et al. (2014) does indeed fulfil this role i.e. to enable populations to evolve
faster and/or further in realised, whole organism biological fitness landscapes in a
similar fashion to the evolutionary advantage seen for in silico, molecular interaction
landscapes tested here (Fig. 6). Nonetheless, such density-dependent MRP (Krašovec
et al. 2014) is a prime candidate for a biological manifestation of the mutation rate
control which we have addressed here.

We have focused on fitness-associated control of mutation rate. However, mutation
is only one evolutionary process where fitness-associated control may be beneficial.
Recombination and dispersal are also evolutionary processes that may be under the
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control of the individual and therefore open to similar effects. Fitness-associated
recombination has been demonstrated to be advantageous theoretically (Hadany and
Beker 2003; Agrawal et al. 2005) and identified in biology (Agrawal and Wang 2008;
Zhong and Priest 2011). Similarly, the idea that dispersal associated with low fitness
might be advantageous has a basis in simulation of spatially differentiated populations
(Aktipis 2004, 2011). This association might perhaps be framed more generally in
terms of ‘fitness-associated dispersal’. Thus, the framework for control of mutation
rate in response to fitness that we have developed here may in future be applicable to
both recombination and dispersal.

Overall, our development of theory and testing its predictions in silico not only
clarifies ideas around themonotonicity of fitness landscapes andmutation rate control,
it leads directly to hypotheses about specific systems in living organisms. At the same
time there is the potential for greater insight through further development of the theory.
Three directions seem particularly likely to be fruitful.

First, while it is striking how effective mutation rate control is at enabling adaptive
evolution, without invoking selection in our in silico experiments, it will be important
to consider the role of selection strategies. Such strategies may implicitly modify
fitness functions. For instance, one of the analytically derived functions shown in
Fig. 3 is the mutation rate function for a DNA space (H10

4 ) which maximises the
probability of adaptation (as derived by Bäck (1993) for binary strings). As outlined
in Sect. 2.4, maximising the probability of adaptation is equivalent to maximising
expected fitness of the offspring relative to its parent. This effect may be implicit in a
selection strategy that removes the offspring of reduced fitness that will inevitably be
produced by maximising offspring expected fitness. Given the importance of selection
in biology, we therefore anticipate that such functions may be closer to mutation rate
control functions in living organisms. This requires further work.

A second area for development is in variable adaptive landscapes. The importance
of time-varying adaptive landscapes in biological evolution is becoming increasingly
appreciated (Mustonen and Lassig 2009; Collins 2011) and variable mutation rates
have a particular role here (Stich et al. 2010). It is worth noticing, however, that our
derivation of optimalmutation rate functions isnot dependent on afixed landscape, as it
depends only on thefitness values.Nonetheless, aswedemonstrate for the transcription
factor landscapes, variation in landscapes’ monotonic properties relates to the shape of
mutation rate functions in predictable ways (Fig. 8). This deserves further exploration
both theoretically and empirically: measuring variation in the monotonic properties of
real biological landscapes will be informative about optimal mutation rate functions
and vice versa.

Finally, there is potential to develop theory around the role of the genotype-
phenotype mapping. Landscape monotonicity, as explored here, is not absolute; it may
depend on this mapping. That is, if the decoding of DNA changes, it may be possible
to convert a non-monotonic landscape into a monotonic one. Biology uses a variety
of such decoding schemes which may themselves evolve. For the transcription factor
landscapes used here, the decoding scheme is defined by the biochemical interactions
between the transcription factor (a protein molecule) and DNA. Thus, evolution of
transcription factors constitutes evolution of DNA-decoding, and indeed we do find a
relationship between the evolutionary age of gene families and the monotonic proper-
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ties of the associated landscapes. A more familiar example is the genetic code, where
there is much existing work on its evolution (e.g. Freeland et al. 2000). Determining
how evolution of such codes affects the monotonic properties of biological landscapes
as explored here may, therefore, provide novel insights into large-scale evolutionary
patterns. Ultimately, theory such as this that identifies analytically or empirically opti-
mal mutation rate control functions may help make predictions about evolutionary
responses to future environmental change (Chevin et al. 2010) or inferences about the
environment(s) within which particular organisms evolved. In the meantime, muta-
tion rate control as developed here may assist directed evolution within biological
and other complex landscapes, for instance in the evolution of DNA-protein binding
(Knight et al. 2009).
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Appendix 1: Intersection of spheres in Hamming space Hl
α

Proposition 1 Let S(a, r) and S(c,m) be two spheres in Hl
α := {1, . . . , α}l with

Hamming distance between the centres dH (a, c) = n. Then the cardinality of their
intersection is

|S(a, r) ∩ S(c,m)|d(a,c)=n

=
∑

r+∈[0,�(n−|r−m|)/2�]
r−∈[0,�(r+m−n)/2�]
r0+r−+r+=min{r,m}
r+−r−=n−max{r,m}

(α − 2)r0
(
n − r+
r0

)

(α − 1)r−
(
l − n

r−

)(
n

r+

)

(9)

Proof The intersection is formed by points b ∈ S(a, r) ∩ S(c,m) ⊂ Hl
α , which form

triangles together with the centres of the spheres a and c:

b

a

r
����������

n
c

m

���������������

Point b can be obtained equivalently by substituting r letters in a or by substituting m
letters in c, and we shall count using the smallest number of substitutions min{r,m}.

Consider a substitution of a letter ai of string a into letter bi . There are three possible
cases:
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ai �= ci , bi = ci Such substitutions contribute to a decrease of distance between the
strings, and we refer to them as beneficial substitutions. There are
dH (a, c) = n of letters ai in a such that ai �= ci . The number of
r+ ∈ [0, n] beneficial substitutions out of n letters in a is

( n
r+

)
.

ai = ci , bi �= ci Such substitutions contribute to an increase of distance between the
strings, and we refer to them as deleterious substitutions. There are
l − dH (a, c) = l − n of letters ai in a such that ai = ci , and each
of them can be substituted into α − 1 letters bi �= ci . The number
of r− ∈ [0, l − n] deleterious substitutions out of l − n letters in a
is (α − 1)r−

(l−n
r−

)
.

ai �= ci , bi �= ci Such substitutions do not change the distance between the strings,
and we refer to them as neutral substitutions. After r+ beneficial
substitutions, there are dH (a, c) − r+ = n − r+ of letters ai in a
such that ai �= ci , and each of them can be substituted into α − 2
letters bi �= ci . The number of r0 ∈ [0, n−r+] neutral substitutions
out of n − r+ letters in a is (α − 2)r0

(n−r+
r0

)
.

The product of these three numbers gives the total number of r+ beneficial, r− dele-
terious and r0 neutral substitutions. For fixed points a and c with dH (a, c) = n, the
third point b ∈ S(a, r) ∩ S(c,m) can be obtained using different values of r+, r− and
r0. However, not all values of r+, r− and r0 are admissible.

First, let us establish the range for r+ and r−. Using the triangle inequalities for
HammingmetricwehavedH (a, c) ≤ dH (a, b)+dH (b, c) and |dH (a, b)−dH (b, c)| ≤
dH (a, c), or (substituting the values n, m and r ):

|r − m| ≤ n ≤ r + m

This gives inequalities r + m − n ≥ 0 and n − |r − m| ≥ 0. Observe that

(r + m − n) + (n − |r − m|) = 2min{r,m}

If r + m − n = 0, then n = m + r , which means that all min{r,m} substitutions
are beneficial. Thus, r+ is bounded above by (n − |r − m|)/2.

If n−|r−m| = 0, thenmax{r,m} = n+min{r,m}, whichmeans that all min{r,m}
substitutions are deleterious. Thus, r− is bounded above by (r + m − n)/2.

Given r+ ∈ [0, �(n − |r − m|)/2�] and r− ∈ [0, �(r + m − n)/2�], the number r0
of neural substitutions is computed from the condition:

r+ + r− + r0 = min{r,m}

Finally, because neutral substitutions do not change the distances, the difference r+ −
r− represents the change of the distance (i.e. the change dH (a, c)−dH (b, c) = n−m,
if r ≤ m). Thus,

r+ − r− = n − max{r,m}

These conditions are the required guards in the summation (9). ��
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Appendix 2: Memoryless communication

Let us consider an X × Y -valued stochastic process {(xt , yt )}t≥0, where (X,X )

and (Y,Y) are measurable sets. Our interest is in the ‘similarity’ between the mar-
ginal processes {xt }t≥0 and {yt }t≥0 under special assumptions on the communication
between X and Y . Recall that a Markov transition kernel from (X,X ) to (Y,Y) is
a conditional probability measure P(Yi | x) on (Y,Y), which is X -measurable for
each Yi ∈ Y . We shall use measure-theoretic notation dP(y | x) for transition kernel
P(Yi | x) = ∫

Yi
d P(y | x).

Proposition 2 Let (X,X ) and (Y,Y) be measurable sets, and let {(xt , yt )}t≥0 be a
X × Y -valued stochastic process such that elements of the marginal process {yt }t≥0
are conditionally independent given {xt }t≥0:

d P(yt , . . . , y0 | xt , . . . , x0) = dP(yt | xt ) · · · dP(y0 | x0)

Then transition kernel d P(yt+1 | yt ) can be expressed as a composition of transition
kernels d P(xt | yt ), d P(xt+1 | xt ) and dP(yt+1 | xt+1) as follows:

d P(yt+1 | yt ) =
∫

xt+1∈X

∫

xt∈X
dP(yt+1 | xt+1) dP(xt+1 | xt ) dP(xt | yt )

This transition kernel has the following properties:

1. If X and Y are statistically independent, then yt+1 ∈ Y is independent of yt ∈ Y :
dP(yt+1 | yt ) = dP(yt+1)

2. If d P(x | y) corresponds to a function x = h(y), then

dP(yt+1 | yt ) = dP(yt+1)

P{h−1 ◦ h(yt+1)} dP(xt+1 = h(yt+1) | xt = h(yt ))

3. If d P(y | x) corresponds to a function y = g(x), then

dP(yt+1 | yt ) = 1

P{g−1(yt )}
∫

xt+1∈g−1(yt+1)

∫

xt∈g−1(yt )

dP(xt+1 | xt ) dP(xt )

4. If d P(y | x) corresponds to a bijection y = h(x), then

dP(yt+1 | yt ) = dP(xt+1 = h(yt+1) | xt = h(yt ))

Proof Transition kernel dP(xt+1 | xt ) can generally be expressed as follows:

dP(yt+1 | yt ) =
∫

xt+1∈X

∫

xt∈X
dP(yt+1 | xt+1, xt , yt ) dP(xt+1 | xt , yt ) dP(xt | yt )
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Using the Bayes formula and conditional independence gives

dP(yt+1 | xt+1, xt , yt ) = dP(yt+1, yt | xt+1, xt )∫
yt+1∈Y d P(yt+1, yt | xt+1, xt )

= dP(yt+1 | xt+1) dP(yt | xt )∫
yt+1∈Y d P(yt+1 | xt+1) dP(yt | xt ) = dP(yt+1 | xt+1)

dP(xt+1 | xt , yt ) =
∫

yt+1∈Y
d P(yt+1, xt+1 | xt , yt )

=
∫

yt+1∈Y

d P(yt+1, yt | xt+1, xt ) dP(xt+1 | xt )
dP(yt | xt )

=
∫

yt+1∈Y

d P(yt+1 | xt+1) dP(yt | xt ) dP(xt+1 | xt )
dP(yt | xt )

= dP(xt+1 | xt )

Thus, dP(yt+1 | yt ) can be expressed using the composition of transition kernels
dP(yt+1 | xt+1) dP(xt+1 | xt ) dP(xt | yt ). We now consider four important cases.

1. If X and Y are independent, then dP(yt+1 | xt+1) = dP(yt+1) and dP(xt | yt ) =
dP(xt ), and therefore

dP(yt+1 | yt ) = dP(yt+1)

∫

xt+1∈X

∫

xt∈X
dP(xt+1 | xt ) dP(xt ) = dP(yt+1)

2. If x = h(y), then

dP(xt | yt ) = δh(yt )(xt ) , dP(yt+1 | xt+1) = dP(yt+1)

P{h−1 ◦ h(yt+1)}

which gives the resulting expression.
3. If y = g(x), then

dP(xt | yt ) = dP(xt )

P{g−1(yt )} , dP(yt+1 | xt+1) = δg(xt+1)(yt+1)

The resulting expression is obtained by integrating dP(xt+1 | xt ) for each xt+1 ∈
g−1(yt+1) and xt ∈ g−1(yt ).

4. Follows from h−1 ◦ h(y) = y for a bijection. ��
Remark 1 The assumption of conditional independence dP(yt , . . . , y0 | xt , . . . , x0)
= dP(yt | xt ) · · · dP(y0 | x0) is common in theory of non-linear filtering or hidden
Markov models (Stratonovich 1959), and it is equivalent to the assumption that the
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observed process {yt }t≥0 does not provide more information about the hidden process
{xt }t≥0 than x itself:

dP(xt−1 | xt , yt ) = dP(xt−1 | xt )

The idea is that y is a ‘noisy’ version of x . Then, using the Bayes formula gives:

dP(yt | xt , xt−1) = dP(xt−1 | xt , yt )
dP(xt−1 | xt ) dP(yt | xt ) = dP(yt | xt )

Note that it is also very common to assume that the hidden process {xt }t≥0 is Markov,
and together the two assumptions imply that the joint process {(xt , yt )}t≥0 is also
Markov (but the observed process {yt }t≥0 is usually not Markov, but a conditional
Markov process). Note that it is not required in Proposition 2 for any of the stochastic
processes {(xt , yt )}t≥0, {xt }t≥0 or {yt }t≥0 to be Markov. In the context of Sect. 4, the
unobserved variable x ∈ X is the distance to optimum d(�, ω), and observed variable
y ∈ Y is fitness.

Appendix 3: Proof of Theorem 1

Let us consider a sequence {Bn}n∈N of closed balls Bn := B[�, δn] = {ω : d(�, ω) ≤
δn} of decreasing radia {δn}n∈N in ametric space (Ω, d), such that the balls are nested:

B1 ⊃ B2 ⊃ · · · ⊃ Bn−1 ⊃ Bn ⊃ · · ·

The difference Sn := Bn−1\Bn will be referred to as a ‘sphere’ of radius δn . Let P be
a Borel probability measure on Ω (i.e. related to the topology on Ω). We shall denote
by Pn the conditional probability P(E | ω ∈ Sn) associated with the sphere Sn :

Pn{E} :=
∫

E∩Sn
d P(ω | ω ∈ Sn) = P{E ∩ Sn}

P{Sn}

Given a P-measurable function f : Ω → R, we shall denote by E[ f (ωn)] the
conditional expectation E{ f (ω) | ω ∈ Sn}:

E[ f (ωn)] :=
∫

Sn
f (ω) dP(ω | ω ∈ Sn)

For example, if P is a uniform distribution, then Pn(ω) = 1/|Sn| and E[ f (ωn)] is the
average value of f (ω) in Sn .

Similarly, we consider a sequence {Yn}n∈N of intervals Yn ⊆ R and conditional
probabilities P(E | ω ∈ f −1(Yn)) defined by their pre-images f −1(Yn) = {ω :
f (ω) ∈ Yn}. We shall denote by E[d(�, ωn)] the conditional expectation E{d(�, ω) |
ω ∈ f −1(Yn)}:
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E[d(�, ωn)] :=
∫

f −1(Yn)
d(�, ω) dP(ω | ω ∈ f −1(Yn))

For example, if P is a uniform distribution, then E[d(�, ωn)] is the average distance
d(�, ω) in f −1(Yn). We now prove the theorem.

Proof of Theorem 1 For convenience, we shall assume that � is a global optimum, so
that condition ω ∈ E ⊆ Ω can be omitted. If Ω contains multiple optima �, then by
d(�, ω) we understand the distance to the nearest optimum.

(⇒) Let {εn}n∈N be a decreasing sequence of εn > 0 (i.e. εn > εn+1), and let
δn > 0 be defined as follows:

δn := sup{δ > 0 : d(�, ω) < δ ⇒ f (ω) > f (�) − εn}

Such δn > 0 exists for each εn > 0 by continuity of f at �, and because
f (�) ≥ f (ω) for all ω. The sequence {δn}n∈N is also decreasing (otherwise
{εn}n∈N is non-decreasing or f is not continuous at�).Observe thatwe already
have monotonicity with respect to balls Bn ⊂ Bn−1 in the following sense:

δn ≥ δm ⇒ εn ≥ εm

We need to prove monotonicity of conditional expectations E[ f (ωn)] within
spheres Sn = Bn−1\Bn . Let n ≤ m so that d(�, ωn) ≥ d(�, ωm). There are
two mutually excluding cases:

E[ f (ωn)] ≤ E[ f (ωm)] or E[ f (ωn)] > E[ f (ωm)]

The first case corresponds to monotonicity and non-negative difference
E[ f (ωm)]−E[ f (ωn)] ≥ 0; otherwise, the difference is negative E[ f (ωm)]−
E[ f (ωn)] < 0. Using the Markov inequality for conditional probability
Pn{ f (�) − f (ω) ≥ εm} and the fact that E[ f (ωn)] > f (�) − εn we derive
the following bounds for E[ f (ωn)]:

εm Pn{ f (�) − f (ω) ≥ εm} ≤ f (�) − E[ f (ωn)] < εn

On the other hand 0 ≤ f (�) − E[ f (ωm)] < εm . These inequalities allow us
to give the following bounds on the difference E[ f (ωm)] − E[ f (ωn)]:

εm Pn{ f (�) − f (ω) ≥ εm} − εm < E[ f (ωm)] − E[ f (ωn)] < εn

Substituting Pn{ f (�) − f (ω) ≥ εm} = 1 − Pn{ f (�) − f (ω) < εm} we
obtain

−εm Pn{ f (�) − f (ω) < εm} < E[ f (ωm)] − E[ f (ωn)] < εn
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Conditional probability Pn{ f (�) − f (ω) < εm} converges to zero for any
decreasing sequence εm → 0, which proves that the probability of non-
negative difference E[ f (ωm)] − E[ f (ωn)] ≥ 0 converges to one. In other
words, the implication d(�, a) ≥ d(�, b) ⇒ E[ f (a)] ≤ E[ f (b)] is true with
probability one as d(�, b) → 0.

(⇐) Consider the function d�(ω) := d(�, ω) = δ. The pre-image d−1
� ([0, δ)) =

{ω : d(�, ω) < δ} of each open interval [0, δ) is an open ball B[�, δ).
Because f maps open balls B[�, δ) to open intervals ( f (�) − ε, f (�)] by
our assumption, the composition f ◦d−1

� is an open mapping of open intervals
[0, δ). Therefore, the inverse function ( f ◦d−1

� )−1 = d�◦ f −1 is continuous at
f (�). This means that for any decreasing sequence {δn}n∈N we can construct
the corresponding decreasing sequence {εn}n∈N by setting

εn := sup{ε > 0 : f (ω) > f (�) − ε ⇒ d(�, ω) < δn}

The rest of the proof is identical to that of the first implication. Specifically,
using Markov inequality we derive the following bounds for E[d(�, ωn)]:

δm Pn{d(�, ω) ≥ δm)} ≤ E[d(�, ωn)] < δn

Using bounds 0 ≤ E[d(�, ωm)] < δm we obtain the following bounds on the
difference E[d(�, ωn)] − E[d(�, ωm)]:

−δm Pn{d(�, ω) < δm} ≤ E[d(�, ωn)] − E[d(�, ωm)] < δn

Because conditional probability Pn{d(�, ω) < δm} converges to zero for
any decreasing sequence δm → 0, this proves that the probability of non-
negative difference E[d(�, ωn)] − E[d(�, ωm)] ≥ 0 converges to one. In
other words, the implication f (a) ≤ f (b) ⇒ E[d(�, a)] ≥ E[d(�, b)] is
true with probability one as f (b) → sup f .

(⇐⇒) If f is both continuous and open at �, then both implications are true in
probability, which means that f and d are weakly isomorphic at �. ��
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