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Abstract. It has been demonstrated that social learning can enable
agents to discover and maintain behaviours that are inaccessible to in-
cremental genetic evolution alone. However, previous models investigat-
ing the ability of social learning to provide access to these inaccessible
behaviours are often limited. Here we investigate teacher-learner social
learning strategies. It is often the case that teachers in teacher-learner
social learning models are restricted to one type of agent, be it a par-
ent or some fit individual; here we broaden this exploration to include a
variety of teachers to investigate whether these social learning strategies
are also able to demonstrate access to, and maintenance of, behaviours
inaccessible to incremental genetic evolution. In this work new agents
learn from either a parent, the fittest individual, the oldest individual,
a random individual or another young agent. Agents are tasked with
solving a river crossing task, with new agents learning from a teacher in
mock evaluations. The behaviour necessary to successfully complete the
most difficult version of the task has been shown to be inaccessible to
incremental genetic evolution alone, but achievable using a combination
of social learning and noise in the Genotype-Phenotype map. Here we
show that this result is robust in all of the teacher-learner social learning
strategies explored here.

1 Introduction

Previous research has shown that with the use of social learning, individuals are
able to discover more complex behaviours that are not accessible via incremental
genetic evolution alone [3]. In this work, and many other simulation models that
explore social learning and culture, social learning itself is often limited. These
limitations are often centred around who individuals learn from. Here we expand
on previous work to explore whether behaviours inaccessible to incremental ge-
netic evolution alone are still discovered, and maintained, when individuals are
permitted to learn from a variety of different individuals. We go on to discuss
why these differing teacher-learner social learning strategies solve the task used
here in differing ways.
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1.1 Incremental Genetic Evolution

Incremental genetic evolution necessarily uses converged populations, which is
often referred to as the Species Adaptation Genetic Algorithm (SAGA) approach
[6]. SAGA impacts on the way populations evolve: recombination will have a far
smaller effect on the motion of the population than in a standard genetic al-
gorithm, as each species is already genetically similar, leaving mutation as the
primary driving force behind evolution. Mutation can be substantially effective
in spaces percolated by neutral networks: pathways of level fitness through the
fitness landscape; in this case genotypes can vary while still producing similar
phenotypes and behaviours. When phenotypes of higher fitness are found the
population converges onto them thus enabling species to discover and converge
upon easily accessible solutions and behaviours. However, if there is no neutral
or incremental path between the corresponding basic behaviour and fitter be-
haviours, the population will struggle to move away from sub-optimality. Fig 1
depicts a mock example. One approach to solving the problem of suboptimal
convergence is to increase the rate at which mutation is applied, potentially al-
lowing the population to explore more of the fitness landscape. However, there
are problems with this approach: as mutation rates increase, evolutionary search
begins to resemble random search making it increasingly difficult for the popu-
lation to maintain solutions. The point at which mutation becomes so large that
favourable structures discovered by evolution are lost more frequently than they
are found is known as the error threshold [10].

Fig. 1. A species starting from point X on the above mock fitness landscape would
achieve peak A via the hill climbing strategy adopted by incremental genetic evolution
(driven primarily by mutation and selection). The inclusion of noise in the genotype
to phenotype map and social learning (e.g. imitation) can enable the species to bypass
areas of lower fitness.

1.2 Discovering and Maintaining Inaccessible Solutions

To solve the issue of sub-optimal population convergence without crossing the
error threshold, noise can be added to the fitness landscape via the genotype
to fitness map. However, depending on where such noise is in the phenotype to
fitness section of that map, its ability to aid in the transition between peaks is
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limited. By instead incorporating noise into the genotype to phenotype map, be-
haviours inaccessible to incremental genetic evolution may be exhibited reliably
by individuals while leaving the genotype untouched. One method for intro-
ducing noise in this way is to introduce transcription errors when writing from
the genotype to the phenotype in systems with equivalent genotype and pheno-
type encodings, such as direct artificial neural network weight encodings [3]. By
introducing potentially new behaviours to the phenotype we deny the initial pos-
sibility of these behaviours being inherited by new individuals through standard
Darwinian evolutionary mechanisms. Therefore in order to maintain successful
behaviours in the population, some form of extra-genetic learning needs to take
place. The extra-genetic learning employed in this model is a combination of
the aforementioned genotype to phenotype noise and social learning through in-
teraction between teachers and learners to facilitate the transmission of learnt
behaviours [1,4]. As in Borg et al. [3], learners or pupils follow teachers in a mock
evaluation on a set of environments or maps. As both teacher and pupil receive
the same environmental input the teacher’s output may be used as a target pat-
tern for error back-propagation, reducing the pupil’s output error compared to
that of the teacher. By learning in this way pupils are able to partially imitate the
behaviours exhibited by teachers, thus maintaining aspects of new behaviours in
the population that would have been lost by a stand alone evolutionary process.
The use of teacher-learner social learning has been shown to be sufficient for dis-
covering and maintaining behaviours inaccessible to incremental genetic evolu-
tion alone in a grounded simulation [3]. However, these simulations only allowed
one form of social learning, in which offspring would learn from their fittest par-
ent. Though a valid approach that has been used in previous work [4], there are
other theoretical and empirical models that can be adapted to this work to eval-
uate whether or not other social learning strategies are still capable of achieving
these complex behaviours.
Social learning is seen widely in nature [11] and in a range of species as diverse
as humans and nine-spined stickleback fish [7]. The mechanisms and processes
that underpin social learning are themselves broad, ranging from teaching, imita-
tion and emulation to stimulus enhancement and exposure [5], with any of these
mechanisms potentially leading to formation of traditions and cultures [15,16].
However, within each social learning category there is some dependence on who
information is obtained from, be it a teacher or which agent is unintentionally
(or intentionally) exposing an individual to something new. As social learning
is necessarily conformist, a poor learning model may result in the discovery and
propagation of sub-optimal behaviours. In this work we assess whether who you
are learning from, otherwise known as ‘who’ social learning strategies [8], can
hinder social learning’s ability to discover and maintain behaviours inaccessible
to incremental genetic evolution alone, thus undermining social learning’s adap-
tive advantage over incremental genetic evolution in complex environments.
Laland [8] assess both ‘who’ and ‘when’ social learning strategies, alongside the
complexity of social learning in animals, providing evidence to show its adap-
tive advantages. Laland [8] has a particular focus on conformity: a population’s
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ability to share popular behaviours amongst each other while minimising explo-
ration for new behaviours; the use of conformist social learning can be beneficial
or detrimental depending on the environment or task [8,2,9]. It has also been sug-
gested that conformist social learning that is not supplemented with non-social
exploration can lead to population collapse in temporally varying environments
[2], though recent work suggest that conformist learning may be of benefit in
spatially varying environments [9]. The ‘who’ social learning strategies (con-
cerned with who an agent should learn from rather than when learning should
take place) inspired by Laland [8] are modelled here as three core social learning
strategies: ‘Best Parent’, ‘Oldest’ and ‘Fittest’. The ‘Fittest’ strategy selects the
fittest individual from the population to be the teacher. The theoretical basis
behind this strategy falls partially into the ‘Learning from majority’ category
discussed by Laland [8], but also has a wider basis in nature with many animals
being shown to learn from more successful individuals. Learning from older in-
dividuals derives from the rationale that older individuals must have exhibited
successful behaviours to survive, however this does not have to mean the older
individual in question is in fact the fittest individual, due to this the ‘Oldest’
strategy is likely to provide a broader range of behaviours than the ‘Fittest’
strategy. The ‘Best Parent’ strategy (as seen in Borg et al. [3]) sets the teacher
to be the parent who has won the right to reproduce in a tournament. This is
the least conformist strategy of the three as it allows unfit individuals, relative
to the rest of the population, to be parents as tournaments only involve a small
number of individuals. Additional to these three core strategies we also intro-
duce social learning strategies for learning from random and young individuals.
Though not widely evident in nature, the theoretical benefits of learning from a
random individual (sometimes described as unbiased social learning) have been
have been discussed in numerous works [12,9]. The theorised benefits of unbiased
social learning arise in temporally varying environments, where learning from a
broader set of individuals enables increased access to new behaviours that may
be relevant in the specific environmental state being experienced. A ‘Youngest’
strategy, despite no theoretical basis, is being evaluated as a contrast to the
‘Oldest’ strategy.

1.3 Neuroevolution of Deliberative Behaviours for an Advanced
River Crossing Task

This work uses populations of hybrid neural networks embodied in agents (of-
ten referred to as animats). The hybrid networks are comprised of two different
neural networks: the first controlling the high level deliberative behaviours of
the animat, and the second controlling the animat’s reactive capabilities. Hy-
brid neural network architectures of this sort have demonstrated the ability to
seek long term goals whilst also reacting to unforeseen events ultimately en-
abling the evolution of complex problem solving abilities [13,3,14]. To demon-
strate these problem solving abilities Robinson et al. [13] developed a complex
problem called the ‘river crossing’ or RC task. The RC task required animats
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to find a reward-giving Resource in a 2D grid-world environment containing a
number of obstacles, including Traps, Water (connected to form an impassable
river), and Stones. In order to cross the river animats were required to pick up
Stone objects, which could be carried at no cost to the animat, and place them
in the same cells as Water thus negating the cell’s lethality. Once a continuous
bridge of Stones over the river had been built, animats could access the Resource.
Despite the RC task being reasonably complex, it has been demonstrated that
it could be solved by initially converged populations of animats using only in-
cremental genetic evolution [13]. To test whether social learning could discover
and maintain behaviours inaccessible to incremental genetic evolution alone, a
more complex version of the RC task, known as the RC+ task, was developed
by Borg et al. [3]. A snapshot of the RC+ task can be seen in Fig 2.

An important aspect of the RC task was that individuals were evaluated on
increasingly difficult environments. The RC+ task maintains this principle whilst
making the RC task more difficult in regard to both river width and exposure
to Stone objects. The number of environments an animat was evaluated on
increased from three to five, with environments becoming increasingly difficult
to solve due to river width increasing from zero to four cells. To add additional
difficulty, the number of Stone objects gradually decreases from twenty in the
first environment to zero in the final environment, rendering the bridge building
behaviour useless for solving the final environment. In order to make the final
environment solvable, two extra objects, Object A and Object B, were introduced
into the environment. Object A and Object B were rare objects, with only one
instance of each found in each environment. Object A and Object B are moveable
at no cost to the animat and may be placed upon any cell or object. If an animat
places both Object A and Object B on a cell containing Water, a reward equal to
that of the Resource is received and the animat is considered to have successfully
solved the map. The RC+ task has been shown to be impossible to solve with
incremental genetic evolution alone [3].

Trap

Resource

Stone

Object A

Object B
Water

Agent

Fig. 2. RC+ environment with accompanying activity (shunting) landscapes.
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2 The Model

The hybrid neural network used by Borg et al. [3] and others [13,14], and there-
fore used here, may be broken down into two network models: a shunting net-
work and a decision network, with the decision network passing information on
to the shunting network which in turn controls animat movement. The shunting
network is not directly exposed to any evolution or learning. The deliberative
network is exposed to both evolution and learning, enabling the evolution and
inheritance of behaviour.

2.1 The Shunting Network

The shunting network is a locally-connected, topologically-organised network
of neurons that was originally used for collision free motion planning and has
already been applied to the river crossing task [13,14] and RC+ task [3]. This
network is advantageous as it exhibits computational efficiency by not explicitly
searching over all possible paths. The shunting model is used here by mapping
the topologically-organised neurons as cells in the RC+ environment’s 20 by 20
grid. Using the shunting equation (see equation 1) values are to propagate across
the neurons/cells using the outputs from the decision network, producing an
activity landscape with peaks and valleys representing desirable and undesirable
features in the environment. The result is a landscape which allows the animat to
follow a route with the higher (iota) values while avoiding undesirable valleys.
An example of an activity landscape with a snapshot of the environment it
represents can been seen in Fig 2.

dxi
dt

= −Axi +
∑
jεNi

wij [xj ]
+
+ Ii (1)

In equation 1 each neuron/node in the shunting network corresponds to one
cell in the RC+ environment; xi is the activation of neuron i; A is the passive
decay rate; Ni in the receptive field of i; wij is the connection strength from
neuron j to i, specified to be set by a monotonically decreasing function of the
Euclidean distance between cells i and j; the function [x]+is max(0, x); and Iiis
the external input to neuron i (known as the Iota output).

2.2 The Decision Network, Evolution and Learning

The decision network can inform agents of desirable and undesirable objects
in the environment based on the agent’s current environmental position. The
decision network is a feed-forward neural network, with a single four neuron
hidden layer, that inputs information from the animats current location in the
RC+ task world to gain an iota value for each possible environmental state, with
the exclusion of grass whose value is always set to 0 (to ensure neutral space



7

for activity to propagate through when producing an activity landscape using
the shunting model). A hyperbolic tangent activation function is applied at each
output node with a boundary of -0.3 to 0.3; values below -0.3 round to -1, above
0.3 rounds to 1 and in between rounds to 0. The output layer contains sixty-
seven neurons representing the Iota values of all sixty-four possible environmental
states, including inaccessible and redundant combinations, with an additional
output neuron for each pick-up/put-down operation on each non-static objects
(Stones, Object A, Object B). A standard hyperbolic tangent activation function
is applied at each hidden node.
Here error back-propagation is used to simulate learning. The use of error back-
propagation to simulate learning has been previously used by Curran et al. [4]
to enable pupil outputs to be corrected to more closely resemble the teacher
outputs. In Curran et al. [4] multiple learning cycles are conducted, until the error
between learner and teacher outputs is minimised to an acceptable level. Here,
as in Borg et al. [3], a similar approach is taken, with learning cycles represented
by each move in a mock evaluation of the environment by the teacher. However,
unlike Curran et al. [4], learning only continues until either the demonstrator
completes all five maps or fails, no direct attempt is made to ensure learner
outputs were minimised to some arbitrary level. A novel approach is taken in
this experiment, that builds on previous work by having different simulations
with different teacher-learner social learning strategies.

3 Experimentation

The model used here is fundamentally the same as introduced by Borg et al.
[3]. Each iteration/generation has a tournament event in which two individuals
from the population of 100 are ran through the RC+ task, with each individ-
ual’s fitness being determined by the number of maps successfully completed.
Each map gets increasingly more complex therefore if an individual is not able
to complete a map they are prevented from continuing on to further maps. Each
map has seven Trap objects and 20 − (5× riverwidth) Stone objects, both of
which are randomly placed, though never on the same space, one reward-giving
Resource on the opposite side of the map to the agent starting position, and one
instance each of Object A and Object B. The river width varies from an initial
width of zero, increasing by one cell per map. Each individual is evaluated on
their ability to reach the resource or place Object A and Object B on to a cell
containing Water. Agents fail when they come into contact with an uncovered
Water or Trap element. Failing to complete a map within 100 steps is also eval-
uated as a failed attempt. The two tournament individuals are compared, with
the fitter agent reproducing with a randomly selected agent from the popula-
tion, with the child replacing the weaker of the tournament agents. Each loci in
an agent’s genotype directly writes to a locus in the agent’s phenotype, which
itself directly encodes a weight in the decision network, with all genotypes and
phenotypes being of length L = 308. To ensure network structures from parents
are maintained during reproduction, a single point recombination mechanism is
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applied. Mutation follows recombination; each loci has a probability Pmut = 1/L
of having a random value from N(0, 0.4) added to it, with the resulting values
being bounded within the range [-1,1]. Once the child genotype has been con-
structed it is written to the child agent’s phenotype; this process is referred to
as transcription. During transcription two randomly selected connection weights
are overwritten with a new random value selected from a discrete uniform distri-
bution U(−1, 1). Directly following reproduction the learning strategy is enforced
via back-propagation. A mock evaluation of the RC+ task takes place between
the teacher and child (now thought of as the learner), with the learner’s inputs
being set to those of the teacher. Learning takes place until the teacher either
fails or completes all five maps. At each step through the evaluation the learner
attempts, via error-back propagation with a learning rate of δ = 1, to imitate
the teacher’s output for the current inputs.
The model in this work utilities five learning strategies, each with a different
way of determining teacher selection. The winner of the reproduction tourna-
ment being set as the teacher in the ‘Best Parent’ strategy, the fittest individual
in the population for the ‘Fittest’ strategy, the individual who has registered the
most tournament wins for the ‘Oldest’ strategy, the last animat to be created
before the current reproduction event in the ‘Youngest’ strategy, and a random
individual for the ‘Random’ strategy. In any case where more than one individ-
ual met the criteria to be assigned the role of teacher, an individual from the
valid sub-set was chosen at random, this situation only every arose when using
the ‘Fittest’ or ‘Oldest’ strategies. One hundred populations for each learning
strategy were evaluated so the results can be aggregated for an overview of each
strategy’s performance. Simulations were run for 2,000,000 tournaments, with
each simulation recording the fitness of the fittest individual and the mean fit-
ness of the population at every 500th tournament. The highest fitness is five,
which indicates an agent completed map five. To indicate the behaviour has
not only been achieved but also maintained the fitness of five has to have been
recorded a further ten times, without a suboptimal result. Each learning strategy
is comprised of 100 populations of agents.

4 Results

Table 1 (top) shows the proportion of populations that were successful in solving
each map. The most notable result was that all strategies were able to complete
map five, the map which required exhibiting and maintaining a behaviour that
in previous work was not obtainable by incremental genetic evolution alone [3],
thus demonstrating that discovering and maintaining behaviours inaccessible to
genetic evolution alone is possible using various teacher-learner social learning
strategies, even those strategies that are either non-conformist (the ‘Random’
strategy) or contrary to strategies observed in nature (the ‘Youngest’ strategy).
It should be noted that to complete one map, all preceding maps must have
also been completed, therefore the ability to solve map five indicates that a pop-
ulation also managed to successfully complete maps 1-4. In Table 1 (top) we
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Map BP Fittest Oldest Random Youngest

1 99% 99% 99% 99% 99%
2 71% 68% 54% 74% 63%
3 47% 47% 37% 54% 47%
4 39% 46% 34% 49% 38%
5 8% 15% 5% 10% 7%

Map BP Fittest Oldest Random Youngest

None 1% 1% 1% 1% 1%
1 28% 31% 45% 25% 36%
2 24% 21% 17% 20% 16%
3 8% 1% 3% 5% 9%
4 31% 31% 29% 39% 31%
5 8% 15% 5% 10% 7%

Table 1. (Top) % of populations completing each map for each social learning strategy.
(Bottom) % of populations achieving each map as their maximum achievement for each
social learning strategy. (BP = Best Parent)

do see many instances of learning strategies failing to complete simpler maps;
we also see this in Table 1 (bottom), which shows how many populations were
successful at completing each map as their maximum achievement, that is to
say completed map one or two, ... without going on to complete any later maps.
Maps 2-4 were all solvable using either a ‘bridge building’ strategy or the more
advanced Object A + Object B strategy, the suggestion here is that some learn-
ing strategies sometimes failed to find the sub-optimal, but more incrementally
accessible, ‘bridge building’ strategy. We would also expect to see populations
that were able to complete map two also completing map four as the behaviour
required is the same, the only difference being a wider river, however Table 1
(bottom) suggests that all strategies had populations that exhibited flawed be-
haviours which were not as generally applicable as they should have been. In
comparable tests by Borg et al. [3], non-learning populations were shown to
achieve above 90% success on maps three and four, with 100% success for maps
one and two, the failure of the social learning strategies explored here to achieve
this rate of success for maps three and four (as indicated by Table 1 (top))
indicates that whilst social learning can enable access to, and maintenance of,
behaviours inaccessible to incremental genetic evolution, they are less effective at
solving simpler, incrementally accessible, tasks. One explanation for this result
is that social learning is necessarily conformist, even when unbiased or random,
thus running the risk of sub-optimal behaviours being maintained and dispersed
within the population.

The results also offer no definitive best strategy for the solving the RC+ task,
as all are able to achieve the final map. However both Table 1 (bottom) and Fig
3 do allow us to begin seeing the differences between strategies. Performance
may be viewed from three differing perspectives: (1) the number of populations
achieving map five, (2) the distribution of maps achieved by populations, (3)
the speed at which populations were capable of completing maps. Both measure
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(1) and (2) may be considered using the data from Table 1 (bottom): from this
data we can see that ‘Fittest’ strategy achieves the highest proportion of pop-
ulations completing map five, however if we conduct a Chi squared test to find
whether the proportion of populations achieving map five is dependent on the
social learning strategy applied or not we come our with a p-value of 0.1316,
thus indicating that the proportion of populations achieving map five is in fact
independent of the strategy applied, therefore we cannot say with any certainty
that the ability of the ‘Fittest’ strategy to achieve map five is significantly better
than any other strategy (we do find that a Chi squared test that only considers
the ‘Fittest’ and ‘Oldest’ strategies does provide a p-value below a significance
level of 0.05, but no other pairings do). If we take Table 1 (bottom) to be a con-
tingency table on which a Chi Squared test may be conducted we may be able to
derive whether the distribution of maps achieved by populations (measure (2)) is
dependent or independent of the social learning strategy used. When such a test
is conducted a p-value of 0.04739 is produced, suggesting that the distribution of
maps achieved by populations is dependent on the strategy used. This result re-
quires further investigation of the data for each population, for each strategy, in
order provide a robust overview of the dynamics each strategy employs to solve
the task. Measure (3) may be considered using the graphs seen in Fig 3. From
Fig 3 it seems that populations employing the ‘Best Parent’ strategy are able
to achieve map five quicker than other strategies, with the ‘Youngest’ strategy
seeming to struggle to achieve map five in any haste. However if we only consider
the average number of generations to complete each map both ‘Best Parent’ and
‘Youngest’ seem to give an average performance, with ‘Random’ and ‘Oldest’
giving the best general performance. It is interesting to note that those popula-
tions employing the ‘Oldest’ strategy who are able to complete map five, do so
quicker on average than ‘Oldest’ strategy populations that complete map two,
three or four this result suggests that when individuals in ‘Oldest’ strategy pop-
ulations do discover the behaviour required to solve map five, it spreads rapidly
through the population. As the ‘Oldest’ strategy acts somewhat like a ‘Dom-
inance’ strategy, with only the dominant tournament winning agent acting as
the teacher, it is maybe unsurprising that behaviours can spread rapidly, how-
ever the random nature of tournament selection can somewhat undermine this
strategy’s ability to guarantee fit behaviours or a consistent teacher. The best
performing populations for the ’Best Parent’, ‘Oldest’ and ‘Fittest’ strategies (as
seen on the left of Fig 3) also seems to indicate that once a favourable behaviour
is discovered using these strategies it is able to spread reasonably quickly. This is
unsurprising as each of these strategies can be highly conformist, with successful
individuals potentially having a monopoly on being the teacher for new agents.
With the ‘Youngest’ strategy, the high turnover of teachers provides little oppor-
tunity for beneficial behaviours to take hold, though these teaching agents are
the progeny of tournament winning parents, so can be expected to be reasonably
fit. The most surprising result is the general performance of the ‘Random’ strat-
egy, given that unlike the other strategies there is no guarantee of the teacher
being either consistent nor particularly fit. One reason for the ‘Random’ strat-
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egy performing at least as well as the other strategies is the nature of the RC+
task itself. If a population only discovers the ‘bridge-building’ behaviour needed
for maps 2-4, whilst forming a dislike for Object A and/or Object B, any con-
formist strategy will struggle to discover the behaviour required for map five, as
the population will tend to conform to the sub-optimal behaviour. However, the
very nature of the ‘Random’ strategy allows for a variety of individuals to fulfil
the role of teacher, regardless of fitness, thus enabling newer ideas to potentially
establish themselves and sub-optimal behaviours to be lost. However, maintain-
ing these newly found optimal behaviours may be difficult in such a strategy.
This does suggest that a hybrid approach may be beneficially, whereby numerous
conformist and non-conformists strategies may exists within a population thus
enabling both innovation and rapid behavioural convergence to occur.

Fig. 3. (Left) Graph showing the first time any population achieved each map. (Right)
Graph showing the average generation populations achieved each map.

5 Conclusions and Further Work

The aim here was to demonstrate that multiple, varied, social learning strategies
would be capable of discovering and maintaining behaviours that are inaccessi-
ble to hill-climbing strategies such as incremental genetic evolution. The results
presented here echo previous work [3], while extending the research to show that
various social learning strategies are capable of both discovering and maintain-
ing inaccessible behaviours. Due to each strategy applied being highly abstracted
from behaviours seen in nature, along with the task being highly artificial, this
work is unable to draw strong parallels to observed social behaviours in na-
ture. Achieving a comparable status will require a more complex use of social
learning, a sensible progression would be the inclusion of synchronous, distinct
learning styles into a single population. A model that allows for multiple social
learning strategies to be employed along side genetic evolution has compelling
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implications for agents, i.e. choosing optimal learning styles for the appropriate
task. Going forward, additional tests will explore the dynamics between multiple
learning strategies and incremental genetic evolution when included in the same
population.
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